Copy 2 (of 42 copies

&

Lo
o0
O') IDA DOCUMENT D-754
® ({o)
N
N
< REUSE IN PRACTICE WORKSHOP SUMMARY
|
° ;)

James Baido, Jr.

L
April 1990
L
Prepared for
o Strategic Defense Initiative Organization
o

DISTRINUTION STATEMENT A

Approved for public release;

° Distribution Unlimited
INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street. Alexandria, Virginia 22311-1772
@

9 0 0 - 1 .:3 0 " 3 (DA Log No. HQ 90-035350

DEFINITIONS
IDA publishes the tollowing documents to report the results of its work.

Reports

Reports are the most authoritative and most carefully considersd products IDA publishes.
They normally smbody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern 1o the
Executive Branch, the Congress and/or the pubtic, or (c) address issues that have
significant economic implications. [DA Reports are reviewed by outside paneis of experts
to ensure their high quality and relevance to the probiems studied, and they are released
by the President of IDA.

Group Reports

Group Reports racord the findings and resuits of IDA established working groups and
paneis composed of seni~r individuats addrecsing major issues which otheswise would be
the subject of an (DA Report. IDA Group Reporis are reviewed by the senior individuals
rasgonsible for the project and others as selected by IDA fo ensure their high quality and
raievancs to the problems studied, and are reisased by the President of IDA.

Papers

Papers, also authoritative and carsfully considersd products of IDA, address studies that
are narrgwer in scope than thoss covered in Reports. IDA Papers are reviewed to ensurs
that they mest the high standards expscted of refersed papers in professional journals or
formal Agency reports.

Dacuments

DA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies. (b) to record the proceedings of
conferences and mestings, () to make availabie preliminary and tentative results ot
anaiyses, (d) to record data developed in the courss of an investigation, or (e) to forward
information that is essentialty unanaiyzed and unevaiuated. Tl.. review of IDA Documents
Is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defenss. The publication of this DA document does not indicate
endorsament by the Department of Defense, nor shouid the contents be construed as
reflecting the official pasition of that Agency.

This Documaent is published in order to make available the material it containg for the use
and convenisnce of interested parties. The material has not necessarily besn completely
evaluated and anaiyzed, nor subjected to formai IDA review.

© 1990 institute for Defense Anglysss

The Governmant of the United States is granted an unlimited license to reproducs this
docment.

Approved for public reieass, unlimited distribution. Unciassified.

Form Approved
r REPORT DOCUMENTATION PAGE OMB No. 0704-0188
S e B e e T L e b e e et e
Lection of infi jon, iy suggesti t‘ornducm;thubuﬁn.hW-hnm d -—-S.ﬂrl:cnF Inmepum-:dleZlﬂcﬂ'm
Davis Highway, Suits 1204.Arlmgun. ummm»moﬁadmmdwwnmmpa(mmxmm 20503,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1990 Final
»
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Reuse in Practice Workshop Summary MDA 903 89 C 0003
, T-R2-597.2
> 6. AUTHOR(S)
James Baldo, Jr.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ' 8. Pmogxmo ORGANIZATION REPORT
Institute for Defense Analyses (IDA) IDA Document D-754
1801 N. Beauregard Street
Alexandria, VA 22311-1772
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
. e N REPORT NUMBER
Strategic Defense Initiative Organization (SDIO)
SDIO/ENA
The Pentagon, Room 1E149
Washington, DC 20301-7100
11. SUPPLEMENARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Public release/unlimited distribution. 2A
13. ABSTRACT (Maxirmum 200 words)
IDA Document D-754 summarizes the Reuse in Practice Workshop which was held at the Software
Engineering Institute. The objective of this workshop was to assess the current state of the practice of software
reuse and provide recommendations to the research and user communities to enhance software reuse. The

workshop focused on four areas of software reuse: domain analysis, implementation, environments, and
management. Position papers from several of the attendees are included as part of the document.

14. SUBJECT TERMS 15. NUMBER OF PAGES
software reuse; domain analysis; implementation; environments; black box reuse; 224
domain modeling; robust; reusable components; traceability. 16. PRICE CODE

17.SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclaseified Unclassified SAR

- Standard 3
NSN 7540-01-280-5500 Prescribed by ANSI Sud. Z39-18
298-102

IDA DOCUMENT D-754

REUSE IN PRACTICE WORKSHOP SUMMARY

James Baldo, Jr.

April 1990

N
1DA

INSTITUTE FOR DEILINSE

Availability Codes

_fgggssion For
NTIS GRA&I
DTIC TAB
Unonnounced

Justification____E}____

ry.
| Distribution/

|Avail and/or
Dist, { Special

Al

ANALYSES

Contract MDA 903 89 C 0003

Task T-R2-597.2

Preface

IDA Document D-754, Reuse in Practice Workshop Summary, was prepared for the
Strategic Defense Initiative Organization (SDIO) in response to tasking contained in IDA Task
Order T-R2-597.2 under contract MDA 903-89-C-0003.

This document is the result of a workshop held in Pittsburgh, PA, 11-13 July 1989. The
objective of the workshop was to assess the state of the practice of software reuse. Software reuse
practice was evaluated in the following areas: domain analysis, implementation, software
environment support, and management. However, due to the workshop program committee’s
objective to produce results that were detailed enough to have impact, other software reuse topics,
for example software reuse libraries, were not included.

The document contains an executive summary written by the author, summaries of
working groups written by the chairpersons and rapporteurs, and a collection of position papers
submitted by the workshop attendees. It should be noted that the summaries and position papers
do not necessarily reflect the views of Institute for Defense Analyses (IDA), Software Engineering
Institute (SEI), Association for Computing Machinery (ACM), or the Strategic Defense Initiative
Organization (SDIO).

The author would like to thank Sylvia Reynolds for her editorial advice and assistance.

Acknowledgments

The author wishes to thank the many people who assisted in organizing and running this
workshop and the sponsoring organizations, IDA, SEI, SDIO and the ACM. Without them this
workshop would not have been possible or successful.

A great amount of credit for this workshop goes to my co-chair Chris Braun. Her keen
insight into the working group selections and her heavy effort through e-mail messages, phone
calls, position paper reviews, and meetings, were key to the successful organization of the
workshop.

The SElI is to be commended for their efforts in overcoming a disaster the weekend before
the workshop. Power to the SEI building, the originally intended site of the workshop, was lost for
an entire week due to the flooding of a basement that housed their electrical generators. Sholom
Cohen of SEI managed to obtain another facility and make arrangements in record time for
necessities such as food and overhead projectors. Sholom handled all the local arrangements for
the workshop in superb fashion.

The keynote speakers, Will Tracz and Ted Biggerstaff, set the momentum of the workshop
through keynote addresses that both motivated and framed the discussion and generation of ideas.
Both Will and Ted assisted Chris and I by providing helpful suggestions with respect to the
organization of the workshop.

Also, many thanks to the working group cﬁairmen and rapporteurs. LtCol. Charles Lillie
(chairman) and Terry Bollinger (rapporteur) of the Management Working Group, Dan Hocking
(chairman) and William Novak (rapporteur) of the Environment Working Group, Ted Biggerstaff
(chairman) and Kyo Kang (rapporteur) of the Domain Analysis Working Group, and Will Tracz
(chairxﬁan) and Stephen Edwards (rapporteur) of the Implementation Working Group.

vii

And most importantly thanks to the attendees who devoted three days to discussing and

generating information on software reuse.

Program Co-Chair

el

James Baldo, Jr.

viii

Executive Summary

The Reuse in Practice Workshop was held at the Software Engineering Institute, in
Pittsburgh, PA, 11-13 July 1989. The objective of this workshop was to assess the current state of
the practice of software reuse and provide recommendations to the research and user communities
to enhance software reuse. The workshop focused on four areas of software reuse: domain
analysis, implementation, environments, and management.

Forty-eight people attended the workshop: twenty-two from the research community;
twelve from government; and fourteen from industry (see Appendix C for names and addresses of
attendees). The research community consisted of universities and Federally Funded Research and
Development Centers (FFRDCs). The federal government was represented primarily by the
Department of Defense (DoD) and other industry representatives were in attendance.

Will Tracz and Ted Biggerstaff started the workshop with keynote addresses. The central
theme of Will Tracz’s keynote address was, “Where does reuse start?” he defined software reuse
as:

...the process of reusing software that was designed to be reused. Software reuse is
distinct from software salvaging, that is, reusing software that was not designed to be reused,
furthermore, software reuse is distinct from carrying over code, that is, reusing code from one
version of an application to another.

Will structured his keynote address by discussing the three P’s of software reuse: Product,
or what we reuse; Process, or when do we apply reuse; and Personnel, who make reuse happen.
Will elaborated on each of these in his keynote address with the goal of identifying issues

surrounding software reuse and relating this information to the theme question, “Where does reuse

start?” The complete text of the keynote address is provided in Appendix B.

Ted Biggerstaff’s keynote address focused on domain analysis. Ted’s central theme was to
describe domain analysis and domain modelling and their relationship to software reuse. Domain
analysis is used for the following:

a. Black box reuse;

b. Reuse with modification;

c. Harvesting reusable components;

d. Aiding understanding;

e. Capturing technological methods (intellectual property); and
f. Aiding training.

Ted also emphasized that an important attribute of domain analysis is to provide human
understanding. He explained domain modelling based on an example of a window manager for a
computer workstation. Ted finished his talk by describing current research activities at the
Microelectronics and Computer Technology Corporation (MCC) in domain analysis.

The workshop was composed of four working groups: domain analysis, implementation,
environment, and management. Each group identified issues in their area based on current state of
the practice for software reuse and provided a potential approach to the issues or provided
recommendations that the research community should address.

The Domain Analysis Working Group identified the need for a general domain analysis
model that would support a foundation and context for the practice of software reuse. The group
generated a domain analysis model called the Pittsburgh Workshop Model of Domain Analysis.
The model divides a domain into three parts: problem space, solution space, and mapping between
the two. Basically the model represents a problem space in terms of product features (e.g., a
relational data base management system), underlying principles (e.g., the relational algebra), and
reiationships between product features and principles (mapping between relational data bases and

hierarchical data bases). The solution space is described in terms of design criteria, design

altematives for components, architectural information about a specific target system, constraints
among the architectural components, and the implementation components with all of their
associated architectural commitments.

The Implementation Working Group was concemned with producing reusable software
components that are robust, reliable, understandable, and easy to use, admittedly a difficult goal.
In an attempt to consider this goal, the group concentrated on defining and refining terms and
processes associated with using domain analysis information. In addition, the Group focused on
the generation of parameterized modules that could be reused with a high degree of confidence.
The group defined two models as a basis for building reusable software components: a Process
Model for creating parameterized components and a Conceptual Model. The Process Model
describes a sequence of steps, using domain analysis information to derive parameterized software
components base on the Conceptual Model.

The Conceptual Model for reusable software components is based on three ideas:

» Concept - what abstraction the component embodies;

» Content - how that abstraction is implemented; and

» Context - the software environment necessary for the component to be meaningful.

A simple mapping of these ideas to Ada may help assimilate the model: the concept might
become a generic specification, each separate content might become a different body for that
specification, and contextual decisions might be represented as the formal generic parameters in
the ;pecification.

The Environment Working Group examined the software engineering process to identify
changes that would abet reuse and map those changes to current software engineering
environments. The group identified the following software engineering approaches that need to be
integrated into the environment:

a. Functional rapid prototyping with reusable components;

b. Process for identifying potential candidates for reuse;

¢. Methods to evaluate software components for reuse; and
d. Capabilities to physically retrieve software components from a library.

The group noted that a reuse environment must support automated traceability of a
component through the requirements to the executable object. Traceability is important for a user
understanding of the component’s design and implementation, since it captures the context and the
constraints of the development process. This understanding assists a user of the component in
reusing it on another application.

The Management Working Group agreed that existing reuse technology is being inhibited
from practice based on current software management and policy structures throughout the
industry. The reason for this probl.m is based on a lack of understanding by management of “how"”
and “why™ software reuse could benefit the software development process.

To facilitate and encourage software reuse in the short-term, the group made several
recommendations, such as demonstrating reuse technology on a project, providing incentives for
reuse on contracts, and education and training. For the long-term, the group recommended better
technical and administrative support for reuse in the lifecycie work products other than code, such
as designs, specification, and test data. They also recommended updating or developing
regulations and standards to address reuse explicitly.

In summary, the workshop groups provided the following key observations and products:

a. A domain analysis model, which attempts to address the domain problem space,
solution space, and a mapping between the two;

b. A proposed conceptual model for software components and a process model for
developing and using reusable software components, based on the conceptual model, was defined;

c. Extensive analysis of the software engineering environment with respect to support of
software reuse; and

d. Identification of management issues inhibiting software reuse and recommendations to

increase software reuse in the lifecycle work products.

Table of Contents
1. SUMMARY OF DOMAIN ANALYSIS WORKING GROUP ..ooooooeooeeoovoeosne, 1
1.1 INTRODUGCTION .oooooooeeeeeeeeseeseeesssesessssssesssssssssessssssmssesssssessssssmeesesesessesesseseesens 1
1.2 A DOMAIN MODEL ...oooooveeeseeoeeeeesesseeesessesessssssssmeeseessseessseesessssssessesseseesesnos 1
1.3 ISSUES AND NEEDSoooovovoeeeseeeeessesssosesmsssssssssssssseessssssossesees oo eeeeeseeeeee oo 6
1.4 RECOMMENDATIONS AND RATIONALE .oooooooeeeoeeoeeeoeeoeoeoeeooeoeeeosoes 8
2. SUMMARY OF IMPLEMENTATION WORKING GROUP oooroeooeooeoeoeooo 10
2.1 INTRODUCTION AND SCOPE ..cooveeeeeoveeeeeseoosesees oo seseseesseeess e ee s, 10
2.2 RESULTS werroeveeoessee e eovessssesessessssssssssmssssssssessssssesesssssesessessssssssessee s e ssose o 10
2.3 CONCEPTUAL MODEL FOR SOFTWARE COMPONENTS .o.oooooovooooov 11
2.8 EXAMPLE ..ooroveeeeoe oo sesoesssssseeesssesssssssssssssssss s e sessoseeesessesese s e eesneees s 13
2.5 PARAMETERIZATION PROCESS MODEL .oooooeoeoooeeeeeooeeeoeeeeeoeeeeeoeooe 14
2.6 ISSUES/NEEDS oooovovoeeeeessesesseessesesesssssssssseesssesssessesesssssssssesseeseses e ee s 16
2.7 RECOMMENDATIONS ..oooooeeeeeeeeeeoeesessoseesemesessessessseoesssssseeseessee e oeeesse 17
2.8 RECOMMENDATION RATIONAL woooooevoveeeeoeeeooe oo e os oo 17
2.9 STATE OF THE PRACTICE ..ooomooveeoeeesoeeeeeeoesessessssseeeseeeesosseeeeesesseeseseee oo 18
3. SUMMARY OF ENVIRONMENT WORKING GROUP ..ooooooooeeoooeoeeooooeoooooo 20
3.1 INTRODUCTION ecooveoeeseeeeeeseeeeseesssssesssesssesssesesssssseseseseseseseeeeeeesseseeeeseeeeeeeen 20
3.2 STATE OF THE PRACTICE ..oooooeeooeooeoeeeeoeeoeeeeeeesoesesessseessessesseeseseseee oo eeses, 20
3.3 ISSUES AND NEEDS .o..ooooooeeeeoeeeseoeeesesessssessssssesseesessseessssssesssssseeseesesesees s, 21
3.4 ROLES AND RESPONSIBILITIES ..ovovooovveeeseeoooeoeeossessesssessessooeeessssessssssn 22
3.5 ENVIRONMENT TOOL CATEGORIES «..oovoeoevvveeeeoeeeeeeoeeeeseoeeeos oo, 25
3.2, RECOMMENDATIONS .oooooooveveeesvveeeesesesssossessssssessssssssessseessesese s sess e eeeens 28
4. SUMMARY OF MANAGEMENT WORKING GROUP ..ooooovoooooeoeeooeoooeoeoon, 29
4.1 INTRODUCTION AND SCOPE wcocvoveoeeeeeesveereessessoeseesesesssesesessseeeeee s eeeeserne 29

4.2 ISSUES AND NEEDS ...t s sesessessaenenes 29

Kyo Kang
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

1. SUMMARY OF DOMAIN ANALYSIS WORKING GROUP

1.1 INTRODUCTION

The potential ubiquity, incomplete understanding, difficulties, and cost of software reuse
indicate the need for a foundation and context for the practice of software reuse. While there are
several approaches to reuse, each of them can be supported by domain analysis, which can make
a contribution to the needed foundation and context. Therefore the Domain Analysis Working
Group focused on the formulation of a general domain analysis model to provide guidance in real-

izing that support.

1.2 A DOMAIN MODEL

The main result of the Domain Analysis Working Group was a model of domain

analysis called the Pittsburgh Workshop Model of Domain Analysis (or PWMDA). The
central idea of this model is that a given domain (e.g., the domain of data base management sys-
tems) contains three parts:

« aproblem space,
* asolution space, and
+ amapping between the two.

The problem space is a network of: 1) target product features (e.g., a relational DBMS);
2) the underlying principles (e.g., the relational algebra); 3) analogies (e.g., tables as an analog of
a relational DB); and 4) relationships (e.g., the relationship or mapping between

relational DBs and hierarchical DBs).

The solution space contains five general classes of elements: 1) design issues or criteria
that represent key questiors distinguishing between classes of designs or architectures (e.g., “What
is the organizing principle of a DBMS system?”); 2) the specific decision altematives associated
with each issue (e.g., for the question in [1], the alternatives are relational, hierarchical, network,
or object-oriented); 3) an architectural component containing the knowledge currently specified
about the target system (e.g., it is relational); 4) constraints among the architectural components
(e.g., if a network DBMS is chosen, some form of indexing support is required); and 5) the imple-
mentation components with all of their associated architectural commitments (e.g., an implemen-
tation package for b-trees, used to implement the indexes of the DBMS).

The architectural component may vary in its complexity from a simple assertion about the
design (e.g., “DBMS is relationally organized™) for highly abstract components, to a detailed pdl
specification for highly concrete components. Each component is thought to have a rich substruc-
ture that includes architectural pattems, specs, test data and constraints. The constraints which are
not drawn explicitly in the network of Figure 1, establish design dependencies among architectural
components such that a design decision at one point may influence or restrict a design decision at
some far removed point in the solution space network.

The solution space network is composed of partially independent islands or clusters. Each
such island may be attended to in a (mostly) arbitrary order during the design process, restricted
only by the ordering dependencies imposed by the constraint relationships between decisions scat-
tered among the various islands. (See Figure2.) Within an island, the decisions may be ordered by
the structure of the issue-decision-architecture relations.

Figure 3 illustrates the nature of a domain island at the lowest level of detail within the
solution domain. In this figure, the architectural components near the top of the island contain
abstract algorithms while those near the bottom are the actual code components.

The mapping is the relationship between the features and principles in the problem domain

with the issues, decisions and architectural components in the solution domain.

9
'SJ =
®
2
P
g
2
P

000 ——
000

\O

0

0

000
d

00

5 (]
Q @)
/\ /\ O\/O &
l104
D1lso/ \3151
ementatio S 8
O

000

I - Issues Imp n
D - Decisions Component
A - Architectural

Components

Mapping
Solution Domain

- Principles
 Relatiopships
- Analogies

Problem Domain

Figure 1: Pittsburgh Workshop Model of Domain Analysis

I: DBMS
organization?

Figure 2: Solution Domain Islands (High Level) for DBMS Domain

Sort

(Abstract Template)

Small I: Memory Availability? Large
Memory Memory
In-Place
Sort
H Slze of List?

PR

Figure 3: Lower Level Island in solution Domain of DBMS

1.3 ISSUES AND NEEDS

The working group defined a model of domain analysis (i.e., PWMDA). Some of the areas
that need further investigations are:

+ The model represents a problem space in terms of product features, underlying princi-
ples, and relationships between product features and principles. One of the issues has
to do with generality and applicability of this model. There could be domains where a
different model (e.g., entity-relationship model) might be more appropriate to repre-
sent the problem space than the proposed model. Although the group felt positive about
the model, all agreed that it needs to be completed and applied to a number of domains
to validate the applicability.

 The proposed model is far from complete. The types of relationships must be identified
(for the “elements” in the problem space) and representations of the “elements” (i.e.,
issues, decisions, and architectures) in the solution ;space must be detailed. Although
the model provides a good starting point, a substantial amount of effort still needs to
be invested to complete it.

+ Another area to investigate has to do with specification and documentation of the “ele-
ments” in a domain model. For example, different specification may be needed for
code templates than code components that are used without instantiation. The context
in which a template can be used must be specified and documented. For each element

type of the domain model, what and how to specify and document the elements need

to be investigated.

]

Domain analysis encompasses a number of systems and, therefore, can go across project
boundaries in a corporate envircnment. Also, the results of an analysis must be incorporated into
system developments at different projects. This raises a number of project management/organiza-
tional issues. Some of the issues discussed at the workshop are:

» Domain analysis is believed to require a very large up-front investment.! This cost is
amortized over a number of system developments. The producer of a domain model
makes a large investment and the users of the model benefit. Often, the producer and
the users of a domain model do not belong to the same organizational entity (e.g.,
project), and the problems that can occur in this case are (1) how to transfer cost to the
user organizations, or how to give incentives to make the investment and produce
domain models, and (2) how to manage and maintain the library containing domain
models and artifacts.

 Various infra-structures (e.g., an organization specialized in domain analysis) were dis-
cussed but no specific recommendation was made. The group felt that an infra-struc-
ture must be created considering such factors as the corporate structure and the culture.

* Inorder to effectively utilize domain models in the software development, a systematic
approach should be employed during the development. However, the existing life-
cycle models (e.g., DoD 2167A) do not address domain analysis and application of

domain analysis results in the development. Domain analysis, library management,

1. The experience by the Domain Specific Software Architecture (DSSA) Project at
the SEI does not support this view. They could develop a reusable software architec-
ture within the original development schedule without any extra cost. Their approach
is somewhat different from the one proposed by the working group in that they extract-
ed a reusable architecture from one system. They expect to evolve this architecture
through applications.

-

and domain model application activities should be incorporated into the development
life-cycle.

» Another concern raised was that many of existing policies and development culture
mitigate against the development of reusable assets and the population of library. Bud-
get constraints and time pressures often prevent one from studying a problem with a

broader perspective.

14 RECOMMENDATIONS AND RATIONALE

The Domain Analysis Working Group made a set of recommendations
to address some of the issues raised at the workshop. Each recommendation
is described below along with the rationale behind the recommendation.

« DoD should fund prototype creation to explore the domain anal-
ysis model.

The domain analysis model proposed by the working group is
far from complete. A large investment is expected to be
needed to complete the model, develop a prototype, apply the
model to a realistic domain, and validate the concept. Govern-
ment, especially DoD, is expected to make a substantial gain
from this approach, and we recommend that DoD fund proto-
type creation to explore the concept.

» For each domain analysis, state:
objective or purpose,

deliverables (concrete),

clear termination or completion criteria, and

scope (boundary).
Since domains (e.g., horizontal/vertical domains) are inter-
related, where (breadth) and when (depth) to stop a domain
analysis are not always clear. We strongly recommend that the
purpose, deliverables, completion criteria, and scope be
defined prior to the analysis.

o Plan for maintenance of the domain model

A domain model changes as we gain more experience with the
domain and with the model. The knowledge gained from the
application of the model must be incorporated into the model
and maintenance of the model should be an on-going activity.
A maintenance plan with allocation of necessary resources
should be developed for each domain model.

- Domain analysis should explicitly define the mapping between
the problem space and the solution space.

The purpose of domain analysis is to analyze how the prob-
lems in a problem space are addressed by the solutions in a
solution space. Mapping between the problem space and the
solution space should be explicitly defined in the model.

Will Tracz
IBM SID MD 0210
Owego, NY 13827

2. SUMMARY OF IMPLEMENTATION WORKING GROUP

2.1 INTRODUCTION AND SCOPE

The implementation working group consisted of three industry, two academic, one gov-
emment, and five research consortium (SEI) members.The major focus of the group was to define
and refine terms and processes associated with using domain analysis information for the genera-
tion of parameterized modules that could be reused with a degree of certainty as to their validity
and effectiveness.

A conceptual model for software components was proposed and a process model for
developing and using reusable software components, based on the conceptual model, was defined.

The group also focused on potential extensions to Ada that would support such a software
reuse paradigm. These included extending the type model and parameterization mechanisms.
Finally, the group discussed the role inheritance plays in software reuse noting the differences
between type inheritance and code inheritance.

This summary presents a rough outline of the formal models developed by the working
group. A full technical paper refining the formal models is under development by several members
of the working group. A copy of this paper is available by contacting the working group leader at
the address above.

2.2 RESULTS

The working group strived to define a formal basis for the development and application of
reusable software components. To this end, a conceptual model for reusable components was dis-

cussed and a process model for creating parameterized components, based on the conceptual

10

model, was defined. It was assumed that an application domain or business area could be suffi-

e ciently defined to warrant analysis, design, and development of software consisting of parameter-
ized modules/objects/components that allowed the rapid creation of new systems (through reuse)
within that problem space.

e
2.3 CONCEPTUAL MODEL FOR SOFTWARE COMPONENTS

The conceptual model for reusable software components was an outgrowth of the Con-
¢ cept/Context model initially proposed by Tracz in his dissertation work at Stanford. The model,
referred to as the 3C model (Concept/Context/Content) is based on defining three facets of a soft-

ware component:

o

(1) The “concept” behind a reusable software component is an abstract canonical
description of “what” a component does. Concepts are identified through require-
ment or domain analysis as providing desired functionality for some aspect of a
system. A concept is realized by an interface specification and an (optionally for-
mal) description of the semantics (as a minimum, the pre- and post-conditions)
associated with each operation. An Ada package specification with its behavioral

semantics described in Anna is an example of a reusable software concept.

The “content” of a reusable software component is an implementation of a con-
cept, or “how” a component does “what” it is supposed to do. The basic premise
is that each reusable software component can have several implementations that
obey the semantics of its concept. The collection of (28) stack packages found in
Grady Booch’s components is an example of a family of implementations for the

same concept (a stack).

The “context” of a reusable software component is 1) the environment that the

concept is defined in (“conceptual context™), and 2) the environment it is imple-

11

mented under (“contentual context”). It is very important to distinguish between
these two types of contexts because different language mechanisms (inheritance
and genericity) apply differently to each. Furthermore, these two contexts clearly

distinguish between type inheritance and code inheritance.

One can use type inheritance to describe the concept of a software component in terms of
the operations and types found in another software component (what we are calling its concept).
In other words, by using inheritance one can describe a new concept in the context of an existing
concept. At the conceptual level then, the new concept “is a” specialization (subtype, or subclass)
of the parent concept. Aggregation of concepts is accomplished through multiple inheritance.
Parameterization or genericity also applies to concepts, but its use is normally associated with
passing data or fumnishing contextual information such as the type of data or data structure being
manipulated (operational context). In the 3C model, parameterization and inheritance play differ-
ent roles at the conceptual level.

Code inheritance may or may not be used in an implementation. One need not observe
conceptual relationships to access operations that may prove useful for the implementation of a
software component. There are two separate contexts that apply to an implementation of a software
component: a visible context, one that the user can manipulate (operational context), and a hidden
context, one the developer has chosen to use in the actual implementation (implementation con-
text).

Interestingly enough, both the operational context and implementation context present
opportunities for variations. A software component’s operational context is established by the user
when, at instantiation or run-time, actual parameters are supplied for formal generic parameters.
The implementation context is usually not visible to the end-user of a software component and
established at build time. The component developer imports a specific software component or
module whose operations are invoked by that particular implementation. But, given the environ-

ment defined by the 3C model, it is possible that several implementations could exist that satisfy

12

the semantic and syntactic properties of the module or component being imported or inherited by
the developer. Furthermore there is no reason why certain aspects of the implementation context
cannot be tied directly to the operational context. For example, if the user specifies that “fast,
bounded” stack of integers is desired, then the stack package’s implementation, might import a list
package that has been implemented as an array, rather than a linked list.

One should note that while it is often the case that the concept and content of a component
share the same context, the context of an implementation often subsumes that of the concept and
extends it with performance trade-offs, hardware platform, operating system, algorithmic, or lan-
guage dependent contextual information. An example of a parametric conceptual context is the
type of element to be stored in a generic stack package (an instantiation parameter). An example
of a semantic conceptual context is describing a stack in terms of a deque where certain operations
are renamed and others are hidden. An example of an implementation’s operational context is a
conditional compilation variable that selects between UNIX and DOS operating system calls. An
example of a component’s implementation context is the importation of a list package (which may

have several implementations).

24 EXAMPLE

The example used for discussion by the working group was the concept of
sorting. The sorting concept can not be described without a context?. The context used to
describe the concept of sorting includes a list of elements that have a partial order on them (a char-

acteristic of the elements in the list). Therefore the context associated with sorting concept is the

2. Note: All concepts and contents have a context! In fact one of the most common
problems programmers face with trying to reuse previously written software is
determining the assumptions made by the original developer. These assumptions
often encompass the contextual information that is buried in the interface or
implementation and point out the need to separate the context from the concept
and content of a reusable software component!

13

data and data structure being sorted. This data structure must have certain properties associated
with it, that is, its context can, in turn, be described in terms of properties of its elements - that a
linear order relationship is defined on them. This i; an example of a concept (sorting) whose con-
text (lists) is itself a concept that has a context of the linear order relationship on its elements. Note
also. the linear order relationship can be satisfied in many ways (e.g., less than, greater than, is a
member of). These are all examples of the conceptual context of the sorting software component.

Focusing now on contentual context, therc . in be several implementations of lists (e.g.,
linked list, arrays, or files), therefore the content or implementation associated with the concept
can take any number of forms based on different contexts. Similarly, there exists several sorting
algorithms, each perhaps more suited for different implementations and attributes of the data (e.g.,
nearly sorted data), each having different run-time performance and resource utilization character-
istics.

The selection of an implementation, or the content of the concept is determined by trade-
offs in context. Clearly, knowing the characteristics of the type of data structure being manipulated
will lead to more efficient implementations. This can result in the population of a reuse library with
several efficient implementations of the same (parameterized) concept, each tailored to a particular
context. At design time, a programmer could identify the concept and define the context it is being
manipulated under based on requirements or operating constraints. At implementation time, the
programmer could instantiate an implementation of the concept with the conceptual contextual

information plus any other contentual contextual information necessary.

2.5 PARAMETERIZATION PROCESS MODEL

The parameterization process model describes the sequence of steps for using domain
analysis information to derive parameterized software components based on the 3C conceptual
model. One should recognize that domain analysis information can be gathered top down or bot-

tom up. Top-down domain analysis starts with an entity-relationship model of an application

14

domain and determines the components associated with it. Bottom-up domain analysis is based on
analyzing several existing systems in an application domain.

In general, a domain analyst 1) identifies a concept 2) determines if variations exist, 3) fac-
tors out the commonality and 4) provides selection parameters that specify the conte);t. Altema-
tively, a concept can be generalized over a range of contextual values. It becomes an economic
issue and implementation trade-off as to how many implementations are associated with each con-
cept. Clearly, one general purpose implementation might lead to certain inefficiencies, therefore,
several implementations, separated and selectable by context is often desired. A concept may have
several implementations, each spanning a subset of the possible solution space bounded by the
contextual information associated with the concept.

The process of developing reusable software components based on the 3C conceptual
model (the process of separating concept from context, content from concept, and context from
content) may be described as follows:

(1) “Separating Concept from Content “

» Analyze an application domain. Recognize commonality of some func-
tionality within an application domain.

» Use commonality to define a concept.
+ Isolate differences or variations of the functionality.

« Isolate differences or variations in possible implementations of the
functionality.

* Record implementation issues for later use.
» Define an interface to the concept in the form of an Abstract Data Type.

» Define the semantics of the concept as pre- and post- conditions (as a
minimum).

(2) “Separating Concept from Context”

» Use difference to define a context of the concept.

« Given a concept and its context, iterate and generalize the concept by
expanding the context.

15

3

Given a concept and its context, iterate and refine the concepts and its
context. Continue until the concept and its context are defined in terms
of basic concepts (hopefully a set of which are in the reuse library).
Note: Inheritance type hierarchies are useful in expressing certain con-
cepts in terms of related concepts.

Refine the interface to the concept, if necessary, taking into account
contextual information.

Refine the semantics of the concept, if necessary.

“Separating Context from Content”

Define the context of the content. Determine the implementation vari-
ations and dependencies (e.g., operating system, hardware, or compiler
dependencies).

Define a context of interest for the concept.
Define a context of interest for the content.

Implement variations of the concept according to trade-offs on perfor-
mance and resources with respect to the context of interest.

Verify that the content (each implementation) matches the concept.

2.6 ISSUES/NEEDS

The reuse issues addressed by the working group focused on populating a reuse library
with robust and reliable reusable components that are easy to locate, understand, and use. The need
for sufficiently adaptable, portable and re-configurable software was felt to be addressed by using
parameterization to separate out the aspects of software that make it not reusable (implementation
dependencies, i.e., contextual information embedded in the implementation). The number and
types of parameters, as well as efficiency issues were also recognized as playing crucial roles in
determining the “usability” of the reusable software. Application generators, the modularization
of parameters (parameterized parameters), and expert system assistance (e.g., AMPEE in CAMP)

were cited as possible approaches for controlling complexity.

16

2.7 RECOMMENDATIONS

The working group suggested the following as recommendations for future
activities in the field of software reuse:
(1) Ada9x should consider adding package and procedure types to support the devel-

opment of reusable software in Ada.

(2) The Concept/Context/Content conceptual model should be refined and discussed

in the programming community in the large.

(3) Application domains should be selected for domain analysis and the generation of
parameterized modules developed and documented consistent with the parame-

terization process model.

2.8 RECOMMENDATION RATIONAL

Motivation for the recommendations can best be summarized in the words
of three of the individuals who attended the workshop.
(1) “There exists no good conceptual basis to apply to software reuse.” -- Bruce Bar-
nes, NSE. The 3C model provides a good conceptual model for the development

of reusable software with a formal foundation in type and category theory.

(2) “Understanding depends on expectations based on familiarity with previous
implementations.” -- Mary Shaw, SEI. One of the failures of software reuse is that
the expectations of the user of the reusable software do not meet the expectations
of the designer of the reusable software. By explicitly defining the context of a
reusable software component at the concept and content level, and formally defin-
ing its domain of applicability, the user can better select and adapt the component

for reuse.

(3) “Domain analysis is building up a conceptual framework, informal ideas and rela-

17

tions; the formalization of common concepts™. -- Ted Biggerstaff, MCC. Domain
analysis is the key to identifying and specifying reusable software modules (con-
cepts). The parameterization process model is an approach for organizing and rep-
resenting this knowledge based on clearly defined relationships stated in the 3C

conceptual model.

Finally, it was the general consensus of the group that as the number of parameters in a
module increases, the ease of use decreases. Therefore the introduction of package types as Ada

generic formal parameters is desirable as an approach to organizing parameters.

2.9 STATE OF THE PRACTICE

The working group observed a varying degree of reuse technology being incorporated by
industry. This broad spectrum of reuse activity can be summarized as follows:

(1) “No planned reuse.”

Software reuse is done on an informal, ad hoc? basis by salvaging
software from previous projects.
(2) “Pilot projects.”

A reuse pilot project is underway that includes studying reuse
literature, generating guidelines, and developing a small set of
components for reuse.

(3) “Informal Reuse.”

Software is identified by projects or departments as being reusable.
Informal guidelines are set up to provide a minimal degree of
documentation and testing for entry into the reuse library.

(4) “Corporate Support.”

Upper management has made a commitment to applying software
reuse by providing resources and incentives to develop and maintain
reusable software repositories that comply with existing reuse
guidelines. Reuse and deposition quotas have been set on new

3. Odd Hack is perhaps a more appropriate term.

18

projects.

So far, only a handful of companies have made significant commitments to reuse (e.g.,
IBM and GTE). Most other companies are either just starting pilot projects to evaluate reuse tech-
nology, or are evaluating results from them. There have been some less than successful projects in
some companies, partially due to lack of critical mass and discipline, underestimating the cost of
reuse, overemphasizing the creation of reuse tools, or lack of understanding of the technical issues

associated with developing reusable software.

19

William Novak
General Electric
Resident Affiliate
Software Engineering Institute
Software Methods
5000 Forbes Avenue
Pittsburgh, PA 15213

3. SUMMARY OF ENVIRONMENT WORKING GROUP

3.1 INTRODUCTION

The primary objective of a study of support environments for software reuse is to identify
the changes in the software engineering process required to support software reuse, and the result-
ing changes required in the software development and maintenance environment. This objective
arises from the fact that it is the software engineering process which defines the activities to be
supported by an environment and set of tools. Since this objective is too broad to satisfy in the
course of a single workshop the Environment Working Group tried to lay the groundwork for

approaching the problem.

3.2 STATE OF THE PRACTICE

A very brief synopsis of some aspects of the current state of the practice
in software reuse is summarized as follows:

» (Re)use of utility routines is common (i.e., math, window, menus, sorts, etc.)
- Stand-alone systems are (re)used often (i.e., compilers, databases, etc.

* Reusable software is concerned with planned reuse of components* different from sta-

4. The term component was selected as the standard term by the working group, rath-
er than others such as resource, asset, artifact, part, element, or module. ‘Component’
has two senses: an all-inclusive meaning throughout the life-cycle, and a limited
meaning as being only executable code; the former sense is the one intended. The
connotations associated with the other terms were either pejorative or unclear.

20

ble (e.g.math) routines and less than stand-alone systems.

» Current use of reusable components is local rather than remote/distributed.
+ Code reuse is the only type practiced (as opposed to other life-cycle components)
* Ad hoc reuse is more common than engineered reuse.

This overview of current practice provides a context in which to discuss the development

of reuse environments.

3.3 ISSUES AND NEEDS

In order to address the issue of how best to support developers using reusable software,
the process needs were identified. Some of the most significant changes/additions to the software
engineering process which result from software reuse are:

In order to address the issue of how best to support developers using
reusable software, the process needs were identified. Some of the most
significant changes/additions to the software engineering process which
result from software reuse are:

« Identification of potential candidates for reuse: This step will become an intrinsic part
of many phases of the software life-cycle, since many life-cycle deliverables have the
potential to be reused.

» Evaluate and select appropriate components to be reused: In the same way, at many
phases of the life-cycle the set of available reusable software components must be eval-
uated and selected for incorporation into the system being developed.

* Retrieve candidate components for inclusion in the new system: After evaluation and
selection the components must be physically obtained for use in the target system.

One of the factors which affects the nature of a software reuse support environment is the

21

paradigm under which reuse occurs. Different names for this have been published in the literature,
but the same divisions often recur:

» Constructive: Most common, with systems built using some existing (code)parts, and
software assembled using standard connection techniques (e.g.,pipes, etc.)

 Adaptive: Design components with high-level parameters for both procedure sand data
(as in object oriented languages)

s Generative: Top-down approach that generates tailor-made components from tem-

plates based on requirements schematics/rules.

3.4 ROLES AND RESPONSIBILITIES

The software engineering process defines the activities and the roles which an environ-
ment must support. The primary roles identified are those of the producer of components, the user
of components, and the manager of components (or library administrator). The following are lists
of the activities which are performed in the process of reusing software from the points of view of

these three roles.

From the point of view of a user of reusable software components there is a well-defined
set of steps which begins at the moment that the possibility of reuse exists. The steps are: 1) /den-
tify a set of possible components, 2) Understand the function and constraints of each component,
3) Evaluate each member of the set of components, 4) Select the best component for the applica-
tion, 5) Retrieve the component, and 6) Integrate the component with the other application ele-
ments

Use of Components
a. Analysis (of requirements)

22

(1) Identify initial functionality and performance requirements

(2) Identify, understand, evaluate, select, and retrieve reusable components. Nego-

tiate requirements based on reusable components (and adapt)

(3) Identify, understand, evaluate, select, and retrieve reusable components for pro-

totype
(4) Develop a functional prototype system
(5) Trace requirements to design
(6) Adapt design to use components
. Design (of solution)
(1) Identify, understand, evaluate, select, and retrieve design components
(2) Prototype and compare alternate designs
(3) Transform requirements components into design components
. Implementation
(1) Identify, understand, evaluate, select, and retrieve code components
(2) Prototype alternative implementations for comparison
(3) Trace design elements to requirements and to code
. Test
(1) Use test cases stored with components in the library
. Maintenance

(1) Improve training and understanding by ma‘ntainers through the domain model,

better available information on the system

(2) Software problems handled through the reusable library system and propagated to

23

other users

In general, component producers provide reusable components, documentation, test plans
and cases, initial classification information, and fixes and enhancements for the components.

Production of Components
a. Identification (through domain analysis, application development, and harvesting from
existing inventory)
b. Engineering for reuse (includes documentation)
(1) Using guidelines for development and implementation
(2) Metrics to determine component’s performance and other characteristics
(3) Developing components from scratch or harvested from existing software

(4) Specific to one application or generic across many library paradigm (Constructive,

Adaptive, Generative)

Validation and Verification
a. Include review/participation by the domain expert

b. Testing for context sensitivity

Submission to the Library
a. Producer certification (may also be done by library)

b. Standards for design methodology, documentation, coding, etc.

Rapid Prototyping

(The following responsibilities and associated activities fall to the component man-
ager, or library administrator.)

Management of Components
a. Distribution

b. Training in library use

24

L
c. Configuration management of library
o I
d. Registration
e. Classification/organization schemes for the library contents
® f. Cataloguing of the library components
g. Reviewing the submissions to the library
h. Testing/Certification of library submissions
®
i. Security and analysis of the library contents for viruses and tampering
j. Safety/Backups/Integrity of the physical library data
o k. History/Metrics/Accounting of library usage
1. Results of domain analysis
g 3.5 ENVIRONMENT TOOL CATEGORIES
A set of broad abstract categories was defined to encompass a range of reuse environment
support tools and methods. These top-level categories are:
o
a. Library procedures
b. Analysis methods
® c¢. Guidelines, standards, and policies for both component production and evaluation
d. Cataloguing methods
e. Search mechanisms
L 4
f. Retrieval mechanisms
g. Physical storage
@ In defining the activities and tool categories one recurring idea was the importance of
25
L

-

being able to provide the user of a reuse environment with automated traceability from an execut-
able component to the design, requirements, and other information associated with that compo-
nent. One of the major reasons for this is the ability to understand the context and constraints which
influenced the development of the component so that these decisions and rationales may be re-
examined in new circumstances when a component is reused.’

The following environment tool categories are further subdivided to detail some of the
specific support which would be required for a reusable software library system based on a con-
structive paradigm. These categories are not directly cross-referenced with the roles defined earlier
due to the large degree of overlap (i.e., analysis methods are used by producers in validating com-
ponents, by library managers in accepting components, and by users in testing components prior
to use in application systems). Rather, they simply address environment support for 1) systermn/
component production tools, 2) library tools, 3) domain analysis tools, and 4) management tools.

System/Component Production Tools

a. Component construction/adaptation/generation

b. Component production “guidelines/standards/policies”
¢. Requirements tools

d. Design tools

e. Analysis methods and tools

f. Traceability tools

g. Expert systems

Library Tools
a. User Interface

5. See the results from the Domain Analysis Working Group for further details in this
regard.

26

(1) Education (on-line help, training, tutorials, etc.)
(2) View/examine components (to determine appropriateness for an application)
(3) Traceability between all life-cycle products associated with the component
(4) Search mechanism (to locate relevant components)
b. Component Submission
(1) Component evaluation tools (metrics on component suitability)
(2) Data extraction tools (to partially extract cataloguing information)
(3) Component data entry support
(4) Tagging mechanisms
(5) Security/virus protection
c. Physical data retrieval mechanism
d. Storage (physical security and data integrity)
e. Library Management
(1) Security/classification
(2) Cataloguing
(3) Analysis
(4) Configuration management
(5) Component evaluation
(6) Library procedures
(7) Expert systems

Domain Analysis Tools

27

a. Automated Support for browsing the domain model
b. Project use of domain analysis results

Management Tools

a. Project management

b. Economic/historical collection

3.6 RECOMMENDATIONS

In the course of attempting to define a reuse environment in the context of the software
engineering process which it must support, it became apparent that the existing waterfall version
of the life-cycle loses too much information during the process (especially in terms of traceability)
and that it was inadequate. Clearly, new process models are required to properly handle software
reuse, especially the use of the new technologies an1 paradigms for reuse. Process models
designed to support reuse will allow software developmen environments to be specifically tailored

to the process.

28

Terry Bollinger
CONTEL Technology Center
12015 Lee Jackson Highway
Fairfax, VA 22033-3346

4. SUMMARY OF MANAGEMENT WORKING GROUP

4.1 INTRODUCTION AND SCOPE

The overall goal of the Management Issues Working Group at the SEI/ IDA Reuse in
Practice Workshop was to develop recommendations for how managers throughout the software
industry could put software reuse into practice. The working assumption of the group was that
existing methods for reusing software are already well ahead of the actual application of such
methods, and that the problem of achieving significant, consistent levels of software reuse
throughout the industry is therefore more managerial than technical.

The working group decided that the scope of the issues discussed in the group would
address the following five aspects of reuse:

a. Problems. What are the key difficulties to widespread software reuse?

b. Benefits. What are the benefits of reuse, and which of those benefits are the most rele-

vant to managers?

c. Incentives. What incentives can managers use to encourage software reuse in an orga-

nization or project?
d. Economics. What are the economics (cost issues) of software reuse?

e. Legal. What are the key legal issues that need to be solved in software reuse?

4.2 ISSUES AND NEEDS

Overall, the issue that seemed to dominate much of the discussion in the management

group was the need for a better understanding in the software community of the potential benefits

29

(and problems) of software reuse. It was felt that having an accurate, widespread understanding of
why and how reuse can be beneficial would assist greatly in promoting its widespread use.
Other issues that the group identified for further discussion included the need for:

a. Contract incentives.

b. Education and training.

(2]

. Better measurement processes.
d. Clear-cut reuse “success stories.”

. Active work on legal issues.

o

f. A multi-dimensional definition of reuse; that is, one which explains reuse in terms of a

particular audience’s needs.

g. Upper management and political involvement.

4.3 RECOMMENDATIONS - NEAR-TERM

The near-term recommendations for increasing software reuse in the industry included:
a. Implementation and full characterization of one or more successful, “full term” reuse

projects in which the benefits of reuse can be described clearly and unambiguously.

b. Explicit mention of reuse in contracts, including in particular the use of incentive fees

to specifically promote reuse.

Mr. Stanley Levine gave a specific example of an actual draft contract that speci-
ﬁed incentive fees for software reuse in the Army’s Advanced Field Artillery Tactical
Data Systems (AFATDS) effort.

¢. Education and training. Education of certain key personnel was seen as being a partic-

ularly important initial step in promoting reuse. Two key groups are:

30

« Contracts people
* Program managers

Specinc mechanisms for educating these people in reuse could include

(1) Customized seminars

(2) Established courses (e.g., Defense Systems Management College, Air Force’s

Bold Stroke, and others)

(3) Making managers aware of the non-cost benefits of software reuse. If most man-
agers recognize that reuse can benefit areas such as design and code quality, main-
tainability, and rapid response to customer needs, they will be more likely to

accept it as a problem-solving tool.

(4) Explicit questions on reuse during program reviews. Asking about reuse (or the
lack thereof) during a program review is a simple way to greatly increase the

awareness of the potential opportunities for reuse in a project.

44 RECOMMENDATIONS - LONG-TERM

The long-term recommendations of the group for increasing software reuse included:
a. Better technical and administrative support for broad-spectrum reuse — that is, for the
reuse of life cycle work products other than code, such as designs, specifications, and

test data.

b. Updating or developing regulations and standards to address reuse explicitly:
(1) Develop a reuse manager’s guide.
(2) Update 2167A to address reuse.

(3) Update AFR 800-14 for reuse.

3

(4) Developing better cost models

4.5 RATIONALE FOR RECOMMENDATIONS

There was a general consensus in the group that the benefits of reuse clearly exist, and that
it is those benefits that provide the rationale for the above recommendations. Specific benefits
which could accrue from software reuse include:

a. Reduction of development costs.

b. Increases in reliability.

c. Increases in software quality.

d. Shortening of development schedules.

e. Reduction of risks

f. Responsiveness to customer needs.

g. Ability to build larger, more complex systems.
h. On-the-job education of developers.

i. Increased maintainability

j- Increased security. -

It was observed that many or all of these benefits are only potential, and that poorly
planned reuse could result just as easily in losses as in gains of the desired qualities. Like other
software technologies, reuse is no panacea; only by increasing an overall awareness of when and
how to build and use reusable components will reuse become a significant part of the software

development process.

32

APPENDIX A

Workshop Program Committee
James Baldo Jr. - Workshop Co-Chair
Chris Braun - Workshop Co-Chair
Sholom Cohen - Local Arrangements

Working Group Members
Domain Analysis Working Group

Ted Biggerstaff - Chairman
Kyo Kang - Rapporteur
Edward Beaver
Patrick Caroll
Emesto Guerrieri
Barbara Hignite
Kenneth Lee
Jim Perry
Mary Shaw
Implementation Working Group

Will Tracz - Chairman
Stephen Edwards - Rapporteur
Bruce Bames

Sholom Cohen

Liesbeth Dusink

John Goodenough

3

Larry Latour
Spencer Peterson
Chuck Plinta
Ruth Rudolph
Ruth Shapiro

Environment Working Group
Dan Hocking - Chairman

william Novak - Rapporteur
Harley Ham
James Hess
Beverly Kitaoka
Constance Palmer
James Solderitsch
Terry Vogelsong
Paul Wilbur

Management Working Group
Charles Lillie - Chairman

Terry Bollinger - Rapporteur
Gregory Aharonian

Dennis Ahern

Richard Armour

Brian Baker

Richard Fairley

Robert Holibaugh

Harry Joiner

Stanley Levine

James Lund

Rod Moyes
Philip Palatt

Spencer Peterson

35

APPENDIX B

Where Does Reuse Start

Will Tracz
IBM SID MD 0210
Owego, NY 13827
OWEGO®@IBM.COM or TRACZ@SIERRA.STANFORD.EDU

Preface

The following is a transcript of the keynote address for the Reuse in Practice Workshop
sponsored by IDA, SEI and SIGADA. The workshop was held in Pittsburgh, PA at the Software
Engineering Institute, July 11-13th, 1989. The goal of this talk was to establish some common

vocabulary and to paint a broad picture of the issues related to software reuse.

Overview

Software reuse is the type of thing some people swear by. It is also the type of thing that
some people swear at. Software reuse is a religion, a religion that all of us here today pretty much
have accepted and embraced. The goal of this talk is to question the foundation of our faith - to test
the depth of our convictions with the hope of shedding new light on our intuitions. I do not claim
to have experienced divine intervention. You don’t need to take what I say as gospel truth. I believe
in what I say, but what you hear may be something different. Again, let me encourage you to dis-
agree - to challenge the position I have taken on the issues I will be presenting. Before I proceed

further, I need to qualify software reuse by providing a definition.

Software reuse, to me, is the process of reusing software that was designed to be reused.
Software reuse is distinct from software salvaging, that is reusing software that was not designed
to be reused. Furthermore, software reuse is distinct from carrying/over code, that is reusing code

from one version of an application to another. To summarize, reusable software is software that

36

was designed to be reused.
The major portion of my talk will focus on examining the rhetorical question, “Where
does reuse start?”

Introduction

If I were to ask you, “Where does reuse start?”, your reply might be, “What do you mean?
That seems like a pretty vague and nebulous question!”

I agree, so I have done a little top/down stepwise refinement and broken the question up
to focus on three areas - the three P’s of software reuse: product, or what do we reuse, process, or
when do we apply reuse, and finally personnel, or who makes reuse happen. I guess I could have
called it the three W'’s of reuse: what, when, and who.

“Why is this an important question?” you might ask. The first answer that comes to my
mind is that if you would like to build a tool to help reuse software, it would be reasonable to know:
1) what you were trying to reuse, 2) when you would be doing it, and 3) who would be using it.
That is one reason, a pretty good reason, but not the only reason for asking the question “Where
does reuse start?” Rhetorically, if one could understand the ramifications, implications and eco-
nomic justifications of the answer to the original question, “Where does reuse start?”, one would
better be able to answer the question “Where should reuse start?”” and “What needs to be done to
make it happen?” This is the real question I think we are here to answer.

Product

If one examines the question of “Where does reuse start?” by focussing on the products
being reused, one could ask “Does reuse start with code?” There is no denying that software reuse
generally ends with “code”. But, this still is a pretty broad statement. After all, code could be
source code, object code, a high level language statement, a function, a procedure, a package, a
module, or an entire program. The issue raised then is “‘What is the granularity of the code that you
want to reuse?” The larger the granularity, the larger the “win” is in productivity. The overhead for

finding, understanding and integrating a reusable software component needs to be less than design-

37

ing and writing the code from scratch. This supports the argument for the reuse of higher granu-
larity objects such as software packages, modules or classes.

Just as we could debate the granularity of the object being reused, one could argue about
the level of abstraction that is being manipulated. Does reuse start with a design? A design is a
higher level abstraction compared to an implementation. Let me emphasize that the advantage of
starting reuse from a design is that a design is at a higher level of abstraction than an implementa-
tion. Or, in other words, a design has less implementation details that constrain its applicability.

This brings out a point made in a recent paper I have been writing called “Software Reuse
Rules of Thumb”. In it I propose two general rules of thumb for software reuse: 1) to separate con-
text from content and concept, and 2) to factor out commonality, or to rephrase this second rule a
bit, to isolate change. If one applies the first rule of thumb, a program design, say at the detailed
logic level, should have absent some (but not all) of the contextual information that will be sup-
plied at implementation time. That is, the implementation issues, such as specific operating system
or hardware dependencies, are neither part of the content, which is the algorithm or data flow nor
part of the concept, which is the functional specification. I will address the second rule of thumb,
factoring out commonality, later.

Before proceeding, I would like to emphasize the importance of representation, especially
from a tool perspective. Remember I stated earlier that one of the reasons for looking for an answer
to the question of “Where does reuse start?” was to provide a rational for building tools to assist
in the reuse process. This implies that we would like 2 machine manipulable reusable design rep-
resentation. This is not easy! But, I believe the state of the art is now evolving to a point where
there are results of software reuse starting from design. The projects, that I am aware of, have been
at MCC, with the DESIRE system, and at Toshiba, where in the 50 Steps per Module system, they
are working on an expert system to automatically generate C, FORTRAN or Ada from low-level
design data-flow charts. Furthermore, they claim success in reverse engineering existing software

by synthesizing data/flow diagrams for potential reuse.

38

Continuing our analysis of the question “Where does reuse start?”, could reuse start with
a program’s specification? By specification, I mean a statement of “what” a program need’s to do,
not “how” it is supposed to do it. There is a simple answer, yes, in limited contexts, program spec-
ifications can be reusable. But research in automatic programming tells us that this is a hard prob-
lem to extrapolate outside of narrow domains.

Speaking from personal experience, we at IBM in Owego have developed some reusable
avionics specifications. When I say specifications, I mean MIL/STD/2167 System Requirements
Specifications (SRS). They are highly parameterized documents full of empty tables and missing
parameter values. The systems analyst, in effect, programs a new module by specifying the values
in the tables of the SRS document. An application generator then reads the document and builds
the data structures necessary to drive the supporting software.

Completing the waterfall model, we can ask the question on whether reuse can start with
a problem definition (requirements). This is an interesting question. One might ask how? One
could reason that if the same requirements can be identified as being satisfied by certain previously
developed modules, then clearly those modules are candidates for reuse. Well that is a big if. It is
significantly dependent on the traceability of requirements to specifications, the traceability of
specifications to design, and the traceability of design into code and, also into test cases, and doc-
umentation.

Here is where a hypertext system’s information web is ideal for linking these artifacts
together. With a hypertext system, you can walk the beaten path to find out what code to reuse.
But, there is a catch. As Ted Biggerstaff has repeatedly stated, there is no free lunch. You have to
pre/engineer the artifacts to fit into the network, and spend the time and effort to create the links.
Finally you need to somehow separate the context of the objects from the content. One mechanism
for achieving this goal is through parameterization. Parameterization is a way to extend the domain
of applicability of reusable software. Parameterization allows a single module to be generalized

over a set of solutions.

39

To summarize, the issue we have been exploring related to the question of “Where does
reuse start?” is really the question “What software artifact does reuse start with?” Part of the
answer lies in the fact that we know that software reuse generally ends with the reuse of code.
Where it starts depends on: 1) how much effort we want to place in developing the reusable artifact
that we want to begin with, 2) how effectively we can link it to an implementation, and 3) (maybe
not so obvious) how effectively we generalize the implementation.

There is a fourth dependency having to do with the process of software reuse. This is topic
I will address subsequently. First I would like to reflect on the generalization issue of an imple-
mentation. One must recognize that as we progress down the waterfall model, from requirements
to implementation, each artifact adds more detail. An implementation is one instantiation of a
design. There could be several implementations of a design just as there could be several designs
that satisfy a specification but that have different performance and resource attributes. The key is
factoring out the commonality by separating the context from the concept and content. The con-
cept becomes the functional specification. The content becomes a template or generic object. The
context becomes possible instantiation parameters. We have identified some of the dimensions and
implications related to which software artifact to start reuse with. I have concluded that code is a
safe place to start and is, in most cases, the place one ends up. I also have mentioned that hypertext
is the way to establish the traceability between requirements, specification, design, tests and imple-
mentation.

Process

Turning to the software development process, one could observe that most software reuse
starts at the implementation phase. One could modify the software development process to include
a step where, at implementation time, one would look for existing software to save having to write
new code that would do the same thing. With a little luck, this usually works. But with a little fore-

sight, this usually works better. How often is it the case that the code one wants to reuse has to be

modified because either it was not implemented to exactly fit the new context it is being reused in,

or it was not implemented to provide a parameter for adapting it to a different context, or the design
was such that it placed unnecessary constraints on the implementation? If the software designer
had not placed the (somewhat) arbitrary design constraints, then the implementation could be used
as is.

Therefore, with a little foresight, reuse might better start at design time. The implementor
could then leverage off the functionality of existing implementations. This is where the bottom-up
aspect of reuse meets the top-down functional decomposition aspect of most design processes. One
could argue that object oriented design would eliminate this problem. Let me say that object-ori-
ented design helps reduce the problem of the design not meeting the implementation, but parame-
terization still is the key for controlling this process.

One could just as easily extend the same argument for looking for reuse opportunities at
design time, for the same reasons, to the specification and requirements analysis phases of the soft-
ware life cycle. Again, by identifying earlier on in the software development life cycle, what is
available to be reused, trade-offs can made in the specifications, or designs can be tailored to lever-
age off the existing software base.

Let me now introduce somewhat of a new phase in the traditional waterfall model that has
been added explicitly to support software reuse. I define domain analysis to be a generalization of
requirements analysis - instead of analyzing the requirements for a specific application, the
requirements of a generic application are quantified over a domain. Applying my two rules of
thumb: commonality is factored out and context is separated from concept and content. Reusable
objects are identified, and their context defined.

If one recognizes that the software development life cycle needs to be modified in order
to inject software reuse technology, then, relating to personal experience, reuse opportunities and
potential can be identified at code review time, or at design review time. If one looks at the Pro-
gramming Process Architecture used in IBM, one can see these criteria called out as being integral

parts of the inspection process.

41

But then again, instead of reuse being addressed during the software development effort,
maybe reuse could start as an after thought (project follow/on). After one pass through the software
development life cycle, the second time through one can begin to see the commonality between
applications. Guoting Ted Biggerstaff’s rules of three “If you have not Luilt three real systems in
a particular domain, you are unlikely to be able to derive the necessary details of the domain
required for successful reuse in that domain.” As a side point, there is a second rule of three.
“Before you can reap the benefits of reuse, you need to reuse it three times.” The empirical evi-
dence I have seen to date bear this out.

A better choice for where reuse should start is at the beginning of a project (project start
up). Here, the software development process can be defined, reusable software libraries can be set
up and standards as well as tools developed. To share with you again my personal experience, in
one large Ada project, A Computer Integrated Manufacturing (CIM) effort involving 350K
SLOCS, the project had a PRL - Project Reuse Lead. He was responsible for sitting in on all design
and specification reviews to identify commonality between subsystems and support the communi-
cation and application of reuse technology. Because of software reuse, factoring out commonality,
the size and development effort of the project was reduced by over 20%. This is a successful exam-
ple of where reuse started at the beginning of a project.

But, then again, maybe reuse could start at the end of a project (project wrap-up). I am
reminded of the General Dynamics approach for developing reusable software related to an early
version of the DARTS system. Here, after a project was completed, and before the design and
development team was assigned to a new project, they locked everyone up in aroom and wouldn'’t
let them out until they developed an archetype of the system. That is, they recorded how and what
to modify in the system so that it could be reused in the future.

While this is one approach for developing reusable software, it seems like putting the cart
in front of the horse. But, then again, it is reasonable, upon the completion of any project to identify

likely components to add to a reuse library.

42

Finally, we are all in this for the bottom line. Let me state my version of the Japanese soft-
ware factory’s motto: “Ask not what you can do for your software, but what your software can do
for you.” It makes sense, dollars and cents, to capitalize on existing software resources and exper-
tise. But, you need to develop a business case to justify the additional cost of developing reusable
software.

To summarize, the issue we have just explored related to the question of “Where does
reuse start?” is really the question “Where in the software development life cycle does reuse start?”
Where it starts depends on 1) how one modifies the software development process to identify
opportunities for reuse, and 2) how one either modifies or extends the software life cycle to identify
objects to make reusable. The bottonv/line is that software reuse is a good example of software
engineering discipline.

Personnel

Turning to the last dimension I identified related to the question of “Where does Reuse
Start?”, we will focus on the key players in the reuse ball game. The first player to come to bat is
the programmer. Does reuse start with a programmer? Most programmers are responsible for the
design and implementat.ion_ of software. If they can identify a shortcut to make their job easier, or
to make them appear more productive to their management, then they probably will be motivated
to reuse software. But, while programmers might be inclined to reuse software if it was fun, or it
was the path of least resistance, or if they are told to, the real issue is “Who is going to create the
software to reuse in the first place?” There needs to be a critical mass of quality software for pro-
grammers to draw upon in order for them to fully subscribe to the reuse paradigm! So, how do we
bootstrap the system?

Maybe managers can instill a more altruistic attitude on their programmers. This, of
course, becomes a question of budget cost and schedule risks associated with the extra time and
effort needed to make things reusable.

Reuse is a long term investment. Maybe the expense of developing reusable software

43

should be spread across a project! With reuse raise to the project level, there would higher potential
for a larger return on investment, plus more insight and experience in prioritizing what should be
made reusable. Again, there is no free lunch, A project manager would have to authorize the cost.
But project management is generally rewarded for getting a job done on time and under budget.
There is no motivation for making the next project look good. This shortsightedness needs to be
resolved with top management. .

Indeed, this is the case, both here and abroad. At NTT, GTE, IBM, TRW, to name a few
companies, reuse incorporation and deposition objectives are being set. For instance at NTT, top
management has set a reuse ratio goal of 20% on all new projects, with a deposition ratio quota of
5%. That is, all new programs ideally should consist of at least 20% source code from the reuse
library and all new programs should try and deposit at least 5% of their source code to the reuse
library (subject to the acceptance guidelines, constraints, and ultimate approval of the Reuse Com-

mittee).

But, upper management edicting reuse to happen doesn’t insure success. That is why there
is a strong argument for reuse to start in the classroom (educator). The education system, while it
is good at teaching theory, might embrace a little more of the engineering discipline and teach soft-
ware building block construction or composition of programs. Courses are needed in domain anal-
ysis, application generator construction, and parameterized programming, as well as the
availability of pre-fabricated, off/the shelf components structured to facilitate the construction of
new applications in a classroom setting. Again, critical mass is needed to bootstrap the system.

Besides the reuse mind set, maybe reuse should start with a tool set (tool developer). Per-
sonally, I do not see the need for exotic and elaborate tools to support reuse. Although, I am biased
towards using a multi-media hypertext system for the capture and representation of domain knowl-
edge, which I consider crucial to understanding what and how to reuse software.

Have I run out of people who possibly could start the reuse ball rolling? Have I saved my

heavy hitters for last? Should reuse start with the customer? It depends on the customer! A large

44

customer, like the Department of Defense, could easily demand certain reuse requirements be met.
Of course, there might be a small initial overhead cost associated with getting the ball rolling, but
once the system was primed, once application domains were populated with certified, parameter-
ized, well documented, reusable components, then long ferm benefits could be reaped.

I have added the salesperson to this list of individuals who could play a role in determining
where reuse might start. The reason is that if a salesperson knows the marketplace and knows
potential customers, then they could play a key role in building the business case necessary to jus-
tify the capitalization of software for reuse.

Finally, I have added the systems analyst as being a person who possibly could be instru-
mental in starting software reuse. I admit, he joined the team late, but he turns out to be a clutch
player. Back to the issue of putting the horse in front of the cart. Before you can reuse software,
you need software to reuse. Who are you going to call? The domain analysts! Who are the most
qualified individuals in an organization to 1) analyze a problem domain, 2) determine logical sub-
systems and functions, and 3) determine the contents or requirements of modules and anticipate
the different contexts that they might be applied under? The systems analysts. They have made life
so difficult for some of us programmers in the past by providing incomplete or inconsistent or,
worse yet, too detailed specifications. This is a wonderful opportunity to work together toward a

common goal.

To summarize, the issue we have been exploring related to the question of “Where does
reuse start?” has been identifying the roles played by certain individuals in an organization related
to making software reuse happen. In retrospect, several of the key players had non-technical roles
in the game! A point that bears distinction and should come as no surpiise.

Summary

In conclusion, the goal of my presentation was to bring to light issues surrounding soft-
ware reuse. To force you to question what you might have accepted on blind faith. I have probably

raised more questions than I have answered, but, that is good. Hopefully it will provide you oppor-

45

tunities for discussion. Finally, I have shown, as a wise old owl once stated, “It is not what you
know, but who, you know?” that often is necessary for success. Software reuse is no exception to

this rule. Software reuse is a people issue as well as a technology issue

APPENDIX C

Workshop Attendees
Gregory Aharonian
Source Translation & Optimization
P.O. Box 404

Belmont, MA 02178
(617) 489-3727

Dennis M. Ahem

Senior Engineer

Westinghouse Electric Corporation
Aerospace Software Engineering
P.O. Box 746

MS 432

Baltimore, MD 21203

(301) 993-6234

DAHERN@ SIMTEL20.ARMY .MIL

Rich Armour

United States Air Force

HQ USAF/SCW
Washington, DC 20330-5790
(202) 694-8890

Brian Baker

Department of the Navy

Chief of Naval Operations (OP-945D6)
Washington, DC 20305

47

James Baldo, Jr.

Research Staff Member

Institute for Defense Analyses

Computer and Software ENgineering Division
1801 N. Beauregard St.

Alexandria, VA 22311-1772

(703) 824-5516

baldo@ida.org

Bruce H. Bames

National Science Foundation

Information, Robotics, and Intelligent Systems
1800 G Street N.W.

Washington, DC 20550
bbames@note.nsf.gov

Edward W. Beaver

Westinghouse Electric Corporation
Defense & Electronics Division
P.O. Box 746, MS 432

Baltimore, MD 21203

(301) 765-3926

Ted Biggerstaff

Microelectronics & Computer Technology Corp.
9390 Research Blvd.

Kaleido II Bldg.

Austin, TX 78759

(512) 339-3600

big@mcc.com

Christine Braun

Contel Technology Center
12015 Lee Jackson Highway
Fairfax, VA 22033-3346
(703) 818-4475
braun@ctc.contel.com

Patrick Carroll

Resident Affiliate

Software Engineering Institute
Camegie Mellon University
Pittsburgh, PA 15213-3890

48

Joel Cohen

GTE Goverment Systems Corp.
Strategic Electronics Defense Division
National Center Systems Directorate
1700 Research Boulevard

Rockville, MD 20850

(301) 294-8400
cohen_jm%ncsd.decnet@getwd.arpa

Sholom Cohen

Member of the Technical Staff
Software Engineering Institute
Camegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5872
sgc@sei.cmu.edu

Liesbeth Dusink

Delft University of Technology

Faculty of Mathematics and Informatics
Julianalaan 132

2628 BL Delft

NETHERLANDS

betje@dutinfd

Steve Edwards

Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311-1772
(703) 845-3536
edwards@ida.org

Richard E. Fairley
Professor

George Mason University
School of Info Technology
SITE, Room 203

4400 University Drive
Fairfax, VA 22030

(703) 764-6195
fairley@gmu.vax.bitnet

49

Fred J. Foster

Staff Assistant

United States Air Force

Office of the Secretary of Defense
Director, Operational Test and Evaluation
The Pentagon

Washington, DC 20301-1700

(202) 694-2153

Ernesto Guerrieri

Softech, Inc.

460 Totten Pond Road
Waltham, MA 02154-1960
(617) 890-6900
ernesto@ajpo.sei.cmu.edu

Harley Ham

Naval Avionics Center
NAC-825

6000 E. 21st Street
Indianapolis, IN 46219-2189
(317) 351-4457

James A. Hess

Resident Affiliate

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-5851
jah@sei.cmu.edu

Daniel E. Hocking

Computer Scientist

AIRMICS

Computer and Information Science Div.
115 O’Keefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

(404) 894-3110
hocking@airmics.army.mil

50

Rick Holbert

United States Air Force

HQ AFSC/PLR

Andrews Air Force Base
Washington, DC 20334-5000

Robert Holibaugh

Project Leader

Software Engineering Institute
Methods Program

Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-6750
rrh@sei.cmu.edu

Harry F. Joiner

Telos Federal Systems
55 N. Gilbert Street
Shrewsbury, NJ 07702
(201) 530-8444

Kyo Kang

Member of the Technical Staff
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-6415
kck@sei.cmu.edu

Beverly Kitaoka
Science Applications International Corporation
311 Park Place Blvd.
Clearwater, FL 34619
(813) 799-0663

Larry Latour

Assistant Professor

University of Maine

Department of Computer Science
Neville Hall

Orono, ME 04469-0122

(207) 581-3941

Ken Lee

Software Engineering Institute
Camegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7702
kl@sei.cmu.edu

Stanley H. Levine
710 Carol Avenue
Ocean, NJ 07712
(201) 544-3098

Jim Lund

United States Air Force
AFATL/FXG

Eglin AFB, FL 32542-5434
lund@uv4.eglin.af.mil

Rod Moyes

United States Air Force
OOALC

MMETI

Hill AFB, UT 84056
(801) 777-7703

52

William Novak

Resident Affiliate

Software Engineering Institute
Software Methods

5000 Forbes Avenue
Pittsburgh, PA 15213

wen@ sei.cmu.edu

Phil Palatt

Senior Staff Engineer
Dynamics Research Corp.
Systems Division

1755 Jeff. Davis Hwy. #802
Arlington, VA 22202
(703) 521-3812

Constance Palmer

Senior Engineer

McDonnell Douglas

Missile Systems Company
Dept. E434, Mail Code 0922232
P.O.Box 516

St. Louis, MO 63166

(314) 925-7930

Jim Perry

Resident Affiliate

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-7744
perry@sei.cmu.edu

A. Spencer Peterson

Member of the Technical Staff
Software Engineering Institute
Software Methods

Camnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7608
asp@sei.cmu.edu

53

Charles Plinta

Member of the Technical Staff ®
Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890

(412) 268-7771

cpp@sei.cmu.edu PY

Ruth Rudolph

Computer Sciences Corporation

Defense Systems

304 West Route 38, Box N ®
Moorestown, NJ 08057

(609) 234-1100 x2237

Theodore Ruegsegger

Softech, Inc. L
460 Totten Pond Road

Waltham, MA 02154-1960

Ruth J. Shapiro

Resident Affiliate .
Software Engineering Institute

Camegie Mellon University

Pittsburgh, PA 15213

(412) 236-6398

rjs@sei.cmu.edu o

Mary Shaw

Professor of Computer Science

Software Engineering Institute

Carnegie Mellon University ®
Pittsburgh, PA 15213-3890

(412) 268-7731

shaw@sei.cmu.edu

James Solderitsch
Research Scientist
UNISYS Corporation
Defense Systems

P.O. Box 517

Paoli, PA 19301-0517
(215) 648-7376
jis@prc.unisys.com

William L. Sweet

Manager, Industry Sector Operations
Software Engineering Institute
Technology Transition

Carnegie Mellon University
Pittsburgh, PA 15213-3890

(412) 268-7706

ws@sei.cmu.edu

Will Tracz

OBM Systems Integration Division
Mail Drop 0210

Route 17C

Owego, NY 13827

(607) 751-6731

Roger Van Scoy

Member of the Technical Staff
Software Engineering Institute
Camegie Mellon University
Pittsbureh, PA 15213-3890
(412) 268-7620
rlvs@sei.cmu.edu

Terry Vogelsong
Department of the Army

Information Systems Software Development Center

Attn: ASQBI-WRC STOP H-4 (Terry Vogelsong)

Fort Belvoir, VA 22060-5456
(703) 756-5202

55

Paul A. Wilbur

Principal Engineer

Teledyne Brown Engineering
Cummings Research Park
300 Sparkman Dr. NW
Huntsville, AL 37807-7007
(205) 726-1505

56

APPENDIX D

Workshop Position Papers

57

SOCIAL AND ECONOMIC PROBLEMS @
WITH DEFENSE SOFTWARE REUSE

Gregory Aharonian
Source Translation & Optimization
P.0. Box 404, Belmont, MA 02178
617-489-3727 ®

Software reuse is not a technical problem. The current approach to
fostering software reuse, such as in the STARS project and at many companies,
is to concentrate on developing new software tools and methodologies. However,
the greatest impediments to software reuse are not technical, so that any new
tools and methodologies will have marginal impact.

Kather the problems that should be addressed deal with economics,
management, technology transfer, training, legal issues, politics, tradition, |
and the continual advancements in technology. Until these issues are dealt ‘
with, it is unlikely that companies and the DoD will ever achieve cost ‘
reductions through software reuse. ®

What follows are questions concerning the non-technical aspects that have
to be answered to achieve a successful software reuse effort, be it for a
company, or the whole DoD. Unfortunately, at most sites around the country,
the answer to most of these questions is either "No", or "I don't know".

IGNORING EXISTING RESOURCES

Have the current software resources at the company been cataloged in printed
or machine readable form? Where in the company is developed software archived’.’.
Have external sources of software resources available for reuse at the company
been cataloged? Where in the country are available software resources kept?

How aware are company programmers of external software resources?

How can these master directories be prepared? What librarian skills are
needed (for classification and abstracting)? Is there a charge number to put
someone on this project full time? What help can the company librarian offer?

How well are existing software resources being reused? How can current reuse
rates be measured, and is the information being collected?

What information should be collected for each program? Can this information e
be mapped into a database schema? Should the database schema be used with
a traditional database system or an expert system, with or without natural

language query capabilities (does the DoD have a natural language front-end
that can be reused for developing a retrieval system)?

Why hasn’'t the DoD (using DTIC, DACS, DARIS, ISEC, DARPA, SEI, DCA, or ESD) d
funded the collation of a directory of the 10,000+ programs available for

reuse throughout the defense community? Does this mean that the DoD doesn't
want people reusing its' software?

Can software metrics be used to compare software packages providing the

same capability? How can the best mathematical library in Ada be selected e
from two or three repository offerings? Does the library with the highest
quality code from a software engineering viewpoint also have the most
accurate code numerically? Does the company's reuse staff have the expertise
to -answer these questions?

o

58

o ECONOMICS

Do the company's programmers have incentives to reuse software (are they
paid for lines-of-code, or productivity)? Are managers trained to assess
a programmer's software reuse activities?

.Do the programmers have tools to quickly perform cost/benefit analysis at
various stages of the life-cycle to know when to reuse software?

Has the company collected financial data on previous software projects to
use in cost/benefit analysis tools? What are the financial factors that
.contribute to the cost of reusing software?

How can technology be factored into or out of cost/benefits models? For
example, 1986 Ada compilers running on 10 Mhz cacheless 80286 systems run

about ten times slower than 1989 Ada compilers running on 30 Mhz cached
80386 machines.

‘bo the company's managers know how to create incentives for programmers to
reuse software? Are managers rewarded if they save money through reuse?

Should consultants be used to help the company's programmers acquire and
reuse software? How much should be spent on consultants, and how can their
.activities be measured to see if the company is saving money?

Do the company's managers know how to bid proposals that are based on some
estimated level of software reuse?

Is the company being rewarded by the DoD for reducing costs by reusing
g@software? Do contracts have incentive clauses, and can DoD program managers
earn credit for managing programs that spend less money?

Will the company be penalized by the DoD for not reusing software? If the
DoD wanted the ccmpany to reuse software, why don't they require companies
to report on applicable reusable software in submitted proposals?

How can the DoD coordinate software reuse nationally? What does it mean to

have a national software reuse policy? Does the foundation of this policy -

the mandatory reuse of publicly funded, publicly owned software available

to everyone (even competitors) from repositories - sound marketed oriented

or command oriented? What kind of economics does software reuse impose on
@2 company, or a country?

In an era of corporate restructuring and leverage buyouts, which has and will
be happening in the defense community, how can the long term funding needs

of software reuse be made compatible with the short term profit seeking to
satisfy creditors and Wall Street?

How can the company successfully transfer reusable software technology from
their defense activities to non-defense activities? How can DoD software
activities be channeled to fight both a military war with the Warsaw Pact,
and a economic war with Europe and Japan?

MANAGEMENT

How serious is the DoD about software reuse? They've booted STARS back and
forth, cut funding to STARS, supported parallel (and duplicative) software
reuse efforts, and haven't put a general or admiral in charge. Will the
company get in trouble for aggressively promoting software reuse?

Are the company's managers given the financial and administrative resources
to establish software reuse programs? Is upper management willing to invest
for many years before realizing any gains?

Is upper management or the DoD willing to allocating funds to have people
full-time maintaining the reuse effort at the company? If such activities
cannot be charged to existing contracts, will the company allow the activities
to be funded out of administrative funds. Money is provided for IRAD in
software - how about IRAD money for transfering IRAD software results?

Do any of the company's managers have experience to manage a software reuse
program? Do they have the requisite training in software development,
technology transfer, cost/benefit analysis, systems analysis, applications
programming, and library science?

Is the company advertising for positions such as managers of software reuse?
Is the need for such people understood? What qualifications should this type
of manager have? Where in the corporate hierarchy does the manager and his
staff report to? Can a software reuse manager force software to be used on
specific projects? How absolute and how great is his authority? What kind
of supporting staff is needed?

Where is the line drawn on a software reuse staff's activities? Should they
be a service, acquiring and handing off software on demand, or should they
use their expertise to also integrate the software and solve the problem?

Should there be a distinct software reuse group, or should their activities
be distributed across all programming groups at the company?

Have the company's programmers been surveyed to determine what kinds of
software they need and are interested in reusing? Have they also been

surveyed to acquire their suggestions on how the company can best reuse
software?

Do programmer's have permission to visit, on company time, local government
and unviersity fccilities to discover sources of reusable software? Will
programmers be given inhouse training to transfer software technology from
domains they have minimal experience? Reusing software implies reusing the
technology being implemented in the software. For example, defense engineers
have wasted much time and money reinventing capabilities with neural networks
that were already available in existing statistics and physics algorithas,
with which they probably have had little formal contact or training. How can
the company avoid this waste, and what kind of training will be needed?

60

AVOIDING THE N-I-H SYNDROME

Is software being used from all sources, or is the company or command being

@ parochial? Can and is other companies' public domain software be reused?
Is the Navy using any of the Air Force's software, and vice-versa? Can
NASA software be reused in DoD projects, and why are both agencies funding
software reuse environments to be use by the same contractors?

Is the testing-and-verification excuse being used to avoid reusing external
@ sources of software? On the other hand, is testing and verification of
reusable software too costly for those interested in reusing software?

How about all of the disparaging gossip about repository software? Will

this discourage upper management support for reusing repository software?

For example, supposedly the official STARS editor is so large when compiled
@ that it won't fit into 640K of PC memory, requiring extra memory on expansion

boards. Is this reflective of the rest of the repository software?

In an era of competitive software marketing, if a program is good enough to
be of interest to many people, it is good enough to be marketed commercially
for a profit. Does this mean that the only kind of software being donated to
@® public repositories is software of limited use to others, and therefore not
worth reusing? Will competitors try to sabotage the company by offering
reusable software that is more trouble to reuse than it is worth in savings?

Will the Ada zealots bring down plagues on the company if we minimally
.translate good algorithms from Fortran and C?

LEGAL

What is the cost burden of dealing with software in public repositories that
the original developing company has partial rights to?

Does reusing software in certain configurations violate known and unknown
patents? Will companies be liable for actions of uninformed programmers?
Will companies need lawyers as part of their software reuse staff?

Who is liable for Jaults attributed to acquired repository software
® components? At which point in modifying external software, does the burden
of reliability pass from the original developer to the modifying company?

How well should software be tested before being contributed to repositories?
How well can software be tested in general? Will other companies provide
access to the training data used to develop and test the algorithms that

® they have placed in the repositories?

How willing is the DoD management to support publicly available software
repositories, knowing that all of the software will quickly make its way to
Moscow?

\evion Z [-VZ)

Brian Baker/OP-945D6
Anna Deeds/PMS-412
X56311/%X28204

29 Mar 89

29/30 Mar 89 Ad Hoc DoD Software Reuse Strategy Working Group
Institute for Defense Analyses, Falls Church, Va

Position paper: Industrial Policy and Software Reuse: A Systems
Approach

Reuse is one of several modern, revolutionary, interrelated and
interdependent software productivity techniques. Productivity, not
specifically reuse, should be our overarching concern.

Reuse offers perhaps the best opportunity for evolving software
programming into a productive, hard engineering discipline based on
standard engineering designs, algorithms, and reusable code.

Software programmers should be held to the same standards of
timeliness and productivity that we hold other engineers to.

Reuse should be looked at systematically within the matrix of
evolving library technology, other interdependent software engineering
technologies, corporate maicro economics, and governmental macro
economics.

Most software problems are management, not technical, problems.

Therefore, software productivity, and the subset of reuse
strategy, needs to be addressed as a management problem in the large
scale. :

Vhat is needed is an industrial policy or national strategy for
softvare productivity to be implemented through procureaent policy.

Advanced softwvare engineering processes and technology will
continue to be one of America's most important technological-strategic
assets.

The distinction between military mission-critical technologies
and civilian technologies is increasingly blurring.

Key questions: On what scale do ve implement resuse, particularly
for complex R&D-based mission-critical systems? Should reuse be
implenzented on the corporate scale, or on a governmental scale? Or
both?

page 1 of 5 pages

Since reuse can only bae achieved through a merging of library
technology and software engineering processes, the proper scope for
reuse is probably at the corporate, rather than governmental, level.

Why should the government create massive software libraries if
the technology for reuse is so interdependent on internal, corporate
development processes?

It only makes sense for the government to establish libraries if
it does its own software development. It cannot and does not do this
for large-scale mission-critical systems. Perhaps governmental
libraries make sense for developing small-scale, mission-support
systems.

It is imaginable, and theraefore possible, that software
development will someday be done using artificial intelligence with
integrated libraries and increasingly automated software engineering
processes., If so, stand-alonme, governmental libraries (or more
likely, repositories) will not be sufficient for this discipline.

Governmental libraries will probably always tend toward
obsolescence. Government does not have as much incentive as industry
for maintaining state-of-the-art libraries.

Particularly for large-scale mission-critical systems, liability
problems associated with GFI, verifiability and cataloging issues, and
evolving software engineering technology make governmental libraries a
monumentally complex and expensive proposition. On the other hand,
corporations have a perfect incentive to do this.

Government should not tell corporations how to reuse software or
make them use governmental libraries. If reuse makes sense, they will
do it. They do not need us to make them do this. Double-billing for
reused software should be ameliorated by increased competition and
increased emphasis on establishing productivity baselines and
measures.

As corporations continue to increase their technological and
economic resources, and merge, their political, economic and
technological power will probably eventually transcend that of many
nation states and make national boundaries irrelevant.

If the Chinese and Russians become liberal, pluralist,
capitalistic/democratic, the global free-market, capitalist economy
vill inevitably lead to worldvide competition on an as-yet unimagined
scale.

Future long-lived multinational ccrporations will probably tend
to have extremely secure, fortified, state-of-the-art, multiple

page 2 of 5 pages

63

domain-specific libraries since these libraries will probably be
indistinguishable from their software engineering centers.

Technical data libraries vwill be afforded the same security as
software engineering centers, probably more.

Corporate softvare engineering centers, including distributed
mainframe-based multi~-configuration workstations, will probably be
integrated with domain-specific technical data libraries which would
be used by the software engineer in designing applications and reusing
relevant components.

Currently, software is more responsive than hardware (materials)
to changes in the threat, e.g., embedded mission-profile computers.

Since software (and associated technical data) is a significant
corporate (and national) asset, corporations will probably place a
very high price on making it available to governmental libraries.
This approach to reuse becomes expensive.

Since each corporation will have a vested interest in any library
interoperability issues (to assist teaming arrangements), including
graphical user interfaces, hypertext formats, i.e., the "standards"
issue, we should leave industry to initiate any work in this area.

Industry will probably not be responsive to governmental
"standards” groups in the library/reuse area but we should be prepared
to assist any work they vish to pursue.

As a preliminary suggestion, reuse libraries should employ the
card catalog principle implemeated im public libraries, i.e., use
standard information block with (1) author; (2) title; and (3)
subject.

Cost-plus contracts also provide a disincentive for reuse.

Fixed-Price contracts with incentive fees (FPIF) for advanced or
mission-critical applications vill only work within revised
acquisition and life-cycle maintenance policies.

FPIF contracts will only vork within revised profit regulationms.
Corporations should be allowed to make any percentage profit on
government contracts and be inpcentivized to contain costs.

The marketplace and increasingly sophisticated competition should
regulate profits, not artificial, national governament policies which

may increasingly conflict with relatively unbounded international
economic norms.

page 3 of 5 pages

64

FPIF contracts are needed to force industry to treat software
programeming as a hard engineering discipline. Unless we try, it will
not happen by itself.

Therefore, the government needs software engineers to draft RFPs
and evaluate proposals based on certain software engineering
disciplines evidenced in proposals.

Incentive awards should be made for software readability, clear
documentation, object-orieated programming, user-friendly man-machine
interfaces and productivity.

In conjunction with this, corporations should retain all rights
to their software, just as they would any other piece of proprietary
hardware.

Procurement of advanced, mission-critical systems should begin
with rapid prototyping and modeling by two or more competitors for
proof of concept. Focus should be on establishing stringent
productivity measures and baselines for incentive awards.

Any additional time that the rapid prototyping/proof of concept
phawould add to the acquisition process should be balanced by
shortened Full Scale Engineering Development (FSED).

During the life of a contract, productivity standards should be
increased from a baseline such that the contractor could not but help
to employ reuse or other productivity strategies.

An cbject-oriented programming methodology should be required for
MIL-STD 2167A. Associated with this, the government needs to train
personnel in software engineering and object-oriented programming.

Contract specifications should concentrate on performance and
functionality. Government acquisition managers must remain flexible
and open to nev corporate software engineering practices if they make
sense.

After rapid prototyping, competitive FPIF leader-follower FSED
contracts should be issued.

Competitive second sourcing should be considered for long-ternm
full-production contracts. This applies to system hardware and
software.

Our present method of separating softvare development
(contractor-based) and life-cycle maintenance (government-based)
activities will probably not work for increasingly complex systenms,
unless the most-likely life-cycle maintenance activity is involved
during the developmental phase.

page 4 of 5 pages

65

By separating these two software phases (often betveen industry
and governaent), government is in effect paying for the same software
twice: once in development, and again when it trains and staffs
in-house personnel to try to understand, and then modify, the same
software,

Government should compete long-term life-cycle maintenance just
as it does research and development.

Industrially~funded, highly-professional, governmental,
domain-specific software support and engineering centers should be
established in the field to compete with original contractors for
life-cycle maintenance of software. But the original developar's
library or software engineering center should be readily accessible to
governmental personnel. Good examples of governmental software
support centers are the Fleet Combat Direction Systems Support Centers
and the Marine Corps Tactical Software Support Activity.

In conjunction with this this, the government needs to train more
personnel in the software engineering discipline, e.g., send them to
the Software Engineering Institute (SEI).

Governmental research and development centers would then have a
choice between contractor-supplied and governmental (in-house)
maintenance. Major enhancements or modifications to software (driven
by operational requirements) would continue to be funded by the R&D
centers.

page 5 of 5 pages

66

July 11-13, 1989 — Pittsburg, PA

Making Software Reuse Cost Effective

Bruce H. Barnes
Division of Information, Robotics, and Inteligent Systems
National Science Foundation
1800 G Street NW
Washington, D.C. 20550
(Intemet: bbames@note.nst.gov

Terry B. Bollinger
Contel Technology Center
12015 Lee Jackson Highway
Fairfax, Virginia 22033-3346
(internet: terry@ctc.contel.com)

To be cost effective, software reuse
must be recognized as having the
same cost and nisk characternistics as
financial investment. This paper
gives an overview of a set of analyt-
cal methods that are based on the
precept that reuse is a form of in-
vestment, and it describes how such
methods could provide a more uni-
form, rational basis for customizing
the application of reuse technologies
to the specific situations of develop-
ars, projects, and organizations.

1. Introduction

The central premise of this paper is that to
be cost effective, software reuse must be
recognized as having the same cost and risk
characteristics as financial investment. The
rationale for this assertion is shown graph-
cally in Figure 1. A reuse investment con-

sists of any outlay of current resources or la-
bor hours in hopes of future reductions in
costs. Additionally, reuse investments con-
sist only those outlays which do not directly
contribute to the development objectives of
the project. They are thus a form of over-
head, at least as far as the originating
project is concermned.

A project or activity which makes reuse in-
vestments is referred to in this paper as a
producser project, since it functionally has the
role of suppying a reusable “product” to one
or more later projects or activities. It is im-
portant to note that, by definition, a produc-
er activity does not accrue any direct cost
benefits from building reusable products.
Consumer projects are ones which reduce
their total development costs by replacing
one or more of their development activities
with the acquisition of a reusable product
that originated in a producer project.

| Reuse Investments |

Cost to Develop |

G J J
' '
Reuse Producer Project(s) Reuse Consumer Project(s)
Flgure 1 - Software Reuse as an investment
Making Reuse Cost Effective -1=- B. Bames, T. Bollinger

67

July 11-13, 1989 — Pittsburg, PA

Work Products
COMPONENT
GENERALITY

(Number
of readily
avaliable
variations
of a part)

Application-Oriented | COST TO REUSE
(Per application)

High
Medium
Low
Very Low

intelligent
Front-Ends
With Libraries

Application
Program
Generators

Structured Coilections
(Libraries) of
“As is” Components

REUSE INVESTMENT (PRODUCER) COSTS

(Total cost of making parts readily
available to subsequent developers)

High

Figure 2 - Cost-Based Selection of Reuse Technologies

Just as is the case in sales of commercial
software products, a reuse producer can see
a “profit” only when there are enough cus-
tomers t0 make overhead costs of reuse in-
vestment worthwhile. Additionally, it is very
important that consumer activities achieve
significant savings in deveiopment costs,
eise the number of instances of reuse will
need 10 be so large that it is uniikely that a
net profit can be achieved.

The producer/consumer model of reuse is
rich in both managerial and technical implica-
tions. One obvious managerial impiication is
that organizations which fail to provide
some form of payback incentives to produc-

Making Reuse Cost Effective -2~

er projects are uniikely to succeed in making
reuse an integral part of their development

From a technical viewpoint, Figure 2 shows
how a producer/consumer model of reuse
be used to support an integrated view
very diverse set of reuse technologies.
key idea of Figure 2 is that selection of a
reuse technology should not simply
matter of personal preterence, but
id instead be based on an analysis of
needs and constraints of
Cost-based selection of reuse

rpeae

bt

68

B. Barnes, T. Bolinger___

———

July 11-13, 1989 — Pittsburg, PA

For 1 in 1 .. 3200 loop;
it file(l) = * * then
it fila(l+1) = ‘W’ then
it file(l+2) = "r" ...

.f.ll.o(l-ﬂ) ='r;

Pomsn fle(h2) = T;
(Inverse of End ;

('On!.w code)

High “Pomgin Based”
riwrong/right/
Under Pgrameterization Qver Parameterization

DEGREE OF PARAMETERIZATION

DataStructure = File,
Format = Sequential,
CharType = Ascli,
RAMBuftfered = Yes;

Operation = FindReplace,

BeginDelim ="' ',

EndDelim =",

Find = "wrong"”,

Replace = "right”;

Very High
(the "Turing Limit")

Figure 3 ~ The Limbs of Parameterization in Reuse

technologies need not be restricted to only
the large-scale granularity of projects; it can
aiso be applied in a fine-grained approach as
a way of integrating multiple reuse technoio-
gies into a single project. In fine-grained ap-
plications, cost-based classification of reuse
methods tends to lead to the selection of
low levels of reuse investment for compo-
nents with only a moderate lkefhood of be-
ing reused, and high leveis of investment
whenever a strong “market” of consumer ac-
tivity needs can be clearty identified.

Fine-grained appiication of cost methods t©
reuse requires more specific methods for an-
alyzing and specifying the potential reuse
payoffs of components. Figure 3 gives an
example of such a fine-grained approach for
the weill-known (and deceptively simple) con-
cept of module parameterization, in which
software modules are made more reusable
by increasing the number and types of pa-

Making Reuse Cost Effective

-3-

rameters that can be used to control their
behavior. Intuitively, one might tend to as-
sume that if performance issues could be ig-
nored, increasing the level of parameteriza-
tion wouid nearty always lead to increases in
the reusability of a module. For reasons
which can only be briefly mentioned here,
this tums out not to be the case. Very high
leveils of parameterization tend to approach
what the authors refer to as the “Turing fim-
it," which is the point at which the parame-
terization become 30 extensive in scope
that the effective equivaient of a general-
purpose Turing machine is created. At best,
a parameterization scheme that has reached
the Turing imit will be at least as complex as

a general-purpose programming language,
and couid easily be far more compiex; its re-

use potential is thus effectively nil, since re-

developing the part in the original program-
ming language wouid be less costly than at-

B. Bames, T. Bollinger

69

July 11-13, 1989 — Pittsburg, PA

High
COST TO REUSE

(Consumer)

Net Profit

PROFITALOSS

DEGREE OF PARAMETERIZATION

—

High

DEGREE OF PARAMETERIZATION

.

PROFILE

Net Loss
Low

DEGREE OF PARAMETERIZATION

S

High

Figure 4 - ProfitLoss Characteristics of Parameterization

tempting to determine the set of input pa-
rameters needed {0 customize the *reusable”
version of the component.

Instead, the best payoff in parameterization
comes through finding combinations of pa-
rameters which in some way °‘cover” the
most likely forms of variability of the applica-
tion domain. Just as many manufacturing

edge of how the problem domain varies is
shown graphically in Figure 4. Because the
cost of adding new parameters @ a compo-
nent is roughly linear with the increase in
the number of parameters, it is obviously
beneficial 10 “skew” the selection of parame-
ters in favor of those features which a for-
mal or informal analysis of the problem do-
main indicate are most kkely to benefit con-
sumer activities. What may not be as
obvious is how much of a cost impact such
selections can make: as shown in the figure,
a good initial selection of parameterizations
can result in a substantial increase in the net
profitability of that reuse investment. A §t-
tle bit of explicit analysis and consideration
of the problem domain before beginning the
parameterization process can thus be a high-
ly beneficial activity, one which can make it
far more lkely that a large number of con-

B. Barnes, T. Bollinger

July 11-13, 1989 — Pittsburg, PA

Adgptive Reuse Strategy

Sructue A

sy.BllC sy. D Sruat. E
ISt. F Sv. Str. F

= Reused Code == New Code

Hybrid Reuse Strategy
(Using Domain Compiete Part Sets)

Compositional Reuse Strategy

=2 Reused Code == New Code

Hybrid Reuse Strategy
(Using Domain Incompiete Part Sets)

Figure 5 - Major Strategies for Applying Reuse Technologies

sumer activities will be able to make effective
use of the part.

To perform the kinds of optimization just de-
scribed for reuse parameterization, a produc-
er project must be able to “divide and con-
quer” in its analysis of how to maximize the
reuse potential of a system. Figure 5 shows
one approach to the reuse version of the di-
vide-and-conquer problem. The Figure 5 ap-
proach is based on the idea that ail consum-
er activiies must deal with two types of
code: °‘old” code that is being reused to re-
duce costs, and “new” code whose purpose
is to customize the behavior of the old parts
to meet a new appiication. Reuse schemes
may then be classified in terms of how they
‘mix” old and new products to create new

systems.

There are two fundamental approaches 0
this problem. In the adaptive approach, the
support structure is kept as stabie as possi-
ble, while new code is added at the lower
levels of the structure. In the compositional
approach, new code is used to ‘giue togeth-

Making Reuse Cost Effective ~5-

71

er" (compose) old code that is in the form
of discrete, functionally simple modules.
These two fundamental reuse schemes can
be combined to form hybnd approaches
which provide powerful analytical frame-
works for understanding and optimizing the
reuse potential of a producer system.

This paper is only a brief summary of a num-
ber of techniques and issues which the au-
thors would ke to suggest as being impor-
tant in making reuse a widespread, integral
pant of the software engineering process.
Although some of the issues are quite com-
plex, there is good reason to believe that a
cost-based approach © understanding, or-
ganizing, and selecting reuse technologies
can provide important benefits to the soft-
ware industry, in both the short and long
am,

B. Bames, T. Bollinger

POSITION STATEMENT

Software Reuse in Practice Workshop
Software Engineering Institute
July 11-13, 1989

by

Richard E. Fairley
Professor of Information Technology
George Mason University
Fairfax, VA 22030
(703) 764-6195

Area of Emphasis: Organizational/Economic Issues

We are currently investigating incentives for reuse of Ada components
for the AIRMICS organization of the U.S. Army through a subcontract
from Martin Marietta, Huntsville to George Mason University. The
viewpoint we are pursuing can be summarized as follows:

nsuppose the technical and legal problems of reuse were solved.
wWhat disincentives would have to be removed and what incentives
introduced to make reuse of Ada components a widespread and cost
effective practice?"

The main emphasis of our work is on issues of development
methodology, organizational structure, organizational behavior, and

economic modeling of reuse.

Although the main thrust of this work is oriented to incentives for
reuse of Ada components, issues related to methodology, organization,
and economics are similar for all types of software work products
(requirements, design specs, code, test plans) and all types of
implementation languages. We thus expect our results to be
applicable in a wide variety of situations.

In the area of methodology, we are exploring the implications for
reuse of object-oriented development and the "family of systems"
approach of David Parnas and colleagues. There are obviously strong
interactions among domain analysis, development methodology, and
implementation issues. We are attempting to take those interactions
into actcount. The strong interactions among methodology,
organizational concerns, and economic modeling of reuse may be less
apparent, but are equally important and in fact provide the
motivation for our interest in development methodology.

We are focusing a great deal of attention on organizational and
economic issues of reuse. In the long run, these issues may be more
difficult and more critical to successful reuse programs than the
issues of technology or methodology. We are examining issues of
organizational structure to facilitate both reuse in the small and
reuse in the large. We are also distinguishing between ad hoc reuse
and formalized reuse programs.

72

Issues of organizational behavior are concerned with motivation and
individualized incentives for reuse. We are investigating these
issues at various organizational levels, to include programmers, team
leaders, project managers, department managers, executive officers,
and customers/clients. Motivational incentives have been
investigated by others within the context of technology transfer, and
many of the results from those investigations are directly applicable
to software reuse.

Economic considerations are the ultimate test of reuse. Efforts in
technology, methodology, organization, and legal concerns will be of
little consequence unless it can be demonstrated that reuse increases
programmer productivity and/or the quality of software. We are
conducting a survey of existing cost models and software metrics
programs to determine the current state of cost modeling for reuse.

We are also developing cost models that account for factors such as
the increased cost of developing a reusable software component, the
anticipated number of reuse instances for the component, the amount
of modification effort required to reuse the component, and the
percent of the component that will be reused in both modified and
unmodified forms.

In addition, we are incorporating factors that account for the
increased reliability of a reused component over a newly developed
component. Increased reliability has several distinct effects:
saving of the inzreased cost for developing a new component of
equivalent proven reliability, the reduced maintenance effort for a
proven component, and the psychological effect of using a component
of demonstrated reliability.

Metrics for reuse is another aspect of economic modeling that we are
examining. We are developing a set of recommended metrics to track
the time and effort required to develop reusable components,
incorporate rausable components into new systems, and support the
iﬁfrasiructure of reuse libraries, reuse personnel, and reuse
histories.

The final aspect of our work involves case studies in reuse. We have
identified several reuse projects that span a variety of approaches
to reuse. We will examine these projects to determine factors that
contributed to success or failure and to determine how roadblocks and
inhibitors were overcome. Where possible, we will collect economic
data to be used as input to our economic models.

In summary, we are focusing on issues of methodology, organizational
structure, organizational behavior, and economics in software reuse.
We expect to produce a set of recommended guidelines for reuse
programs, incentives for reuse at various organizational levels, and
some economic models of reuses.

73

POSITION PAPER
REUSE IN PRACTICE WORKSHOP

Reuse: Where to Begin and Why!

Robert Holibaugh

Piusburgh, PA 15213
NET: rrh@sei.cmu.edu

Abstract

One of the main impediments to reuse realizing its
potential for improving software productivity and
reliability is the large up-front investment that must be
made. The Software Engineering Institute (SEI) was
interested in identifying the benefits of reuse to the
MCCR community, and so the SEI was faced with the
similar problem of how 0 investigate reuse without
making a large up-front investment. This paper
examines the general advantages and disadvantages of
various starting points for reuse. Finally, we analyze
the decision made by the SEI's Applications of
Reusable Software Components Project.

L Background

1.1. Introduction

The need for increased productivity and reliability
are two of the challenges that led to the formation of the
Software Engineering Institute (SEI). Meeting these
challenges is a fundamemal goal of software
engineering, and these challenges are being addressed
by the community at large, some DOD organizations,
and academia. Furthermore, these problems are being
addressed by using newer languages and techniques
such as Ada and object-oriented design, by evaluating
current development tools and environments, and by
measuring and understanding the software development
process. Work in these areas and comperisons with
other engineering disciplines has led to renewed interest
in the promise of software reusability for decreasing
lifecycle costs and improving reliability.

1Sponsored by the U. S. Department of Defense

Understanding the factors that make software artifacts
(requirements, designs, code, test plans, and
documentation) reusable and applying those resources
successfully will help to transition this promising
software development approach into common practice.

1.2. Potential for Reuse

The reuse of software resources has the potential to
improve productivity by reducing or climinating the
cost of implementation, integration, documentation, and
testing of code. The time saved by modifying reusable
code to fit one’s application will also reduce the total
effort. Furthermare, if a set of reusabie resources is
past of a larger design, a significant amount of effort
will be saved during design and in interfacing the set of
reusable components. The time spent coordinating 2
design among the development staff may actually be
the greatest overall savings from reuse.

In addition t increasing productivity, reusable
resources can also increase the reliability of software by
reducing the coding, interface, and documentation
&rrors. Since reusable resources have been
demonstrated to be reliable, the reliability of the system
under development will be increased. Reusable
resources also have the advanmge that they have been
used by other developers who are not constrained by
the implicit assumptions and approsch of the original
developer. This use is a very effective type of testing
which is somewhat similar (0 mutation testing. The
inclusion of a reusable resource in each new
development further tests the resource thereby
increasing the probability of executing any given
segment of code. When a set of components which
implement a larger functionality are reused, they further

74

reduce interface and communication errors.

Domain specific software, which solves recurring
problems in the domain, has the potential 0 improve
the consistency and maintainability, and to reduce the
time necessary to complete the system. Domain
accompanying requirements and design are reused.
This higher level reuse promotes standard designs for
sysiems and subsystems. Thus, the consistency of
systems from one generation (o the next is increased, so
maintainability of the systems is increased and the
training time for new maintainers is decreased. The
impact of personnel tumover, changing hardware, and
other vagaries of software development are reduced by
reusable designs which capwre high level corporate
expertise. The standard decomposition of compilers
and their reusable tools, lex and yacc, are an example of
this type of savings.

Software reuse also promotes maintainability
because standard designs reduce leaming time, and
reusable artifacts should be simple and easily
undersiood (MCNIC386]. When the development uses a
standard design, more work can be done in parailel and
the development schedule is shortened. Another benefit
of standard designs is that the interfaces are well
understood and work can proceed in parallel. Since
many of the problems have been encountered before
and are resoived in the design and code, the complexity
of the problem is further reduced. Again, the
techniques and knowledge typically taught in an
undergraduate compiler course are a simpie exampie of
the advantages of reuse.

1.3. A Major Reuse Impediment

If reuse can so dramaticaily increase productivity and
reliability, then why don’t we see more reuse? The
answer is that there are 00 few examples of successful
reuse for government or industry to make the large up-
front investment. A strasegic approach would identify
potential applications for reuse, do a domain analysis,
develop reusable resources and tools, creats a reuse-
based software development methodology, and apply
the reusable resources 0 improve productivity and
reliability in future efforts in that domain. Therefore, a
major impediment 1o more successful reuse is how one
can demonstrate the practical advantages of reuse
without a large up-front investment.

75

1.4. Large Initial Investment

The cost for domain analysis, which includes
collecting, organizing, analyzing information about the
domain and representing the results, wouid be high, but
the cost for constructing reusabie components and tools
would be much higher. The effort for a domain
analysis could easily be one staff year with no
guarantee that common functions, objects, or other
reusable resources would be identified. The Common
Ada Missile Packages (CAMP) domain analysis
required approximately 7.5 staff-months of effort
[MCNIC88]). Curremt estimates for the cost of
developing reusable software indicate reusable software
require twenty percent more effort than non-reusabie
software [MCNIC386]. Furthermore, producing
reusable designs and developing reusable subsystems
will undoubtedly cost more than producing a single
design or single subsystem. Since there are very few
examples of reusable designs, the cost to achieve this
level of reusability could be very large indeed.
Guidelines [ST.DE86, GARGAS86, SOFTESS,
PRESS83, STARSS6] for creating reusabie code have
been published, but we don't yet have empirical
evidence that these guidelines will produce reusabie
code. Finally, the cost for creating a reusable
subsystem of say 10,000 lines of code could exceed
$500,000. The CAMP project impleménted 16,000
lines of code with slightly more than 5 staff years of
effort. MCNIC38] Without actually implementing a
sysem with reusable resources, we really can't
determine the effectiveness of the domain analysis and
domain engineering. There is very liule, if any,
evidence that domain analysis and domain engineering
produce effective resuable resources. Without criteria
to determine the effectiveness of the domain analysis
and domain engineering, this is a large initial
investment with no means to evaluate the resuit.

2. The SEI and Reuse

2.1. Constraints on a Reuse Investigation
Because the SEI agreed with the recommendations
made by the Defense Science Board on the potential
productivity payoffs of reuse, the SEI became interested
in examining the costs and benefits of reuse, in
demonstrating a proof of concept, and in acquiring and
transitioning stase-of-the-art reuse technology.

Therefore, an SEI project was defined and executed 0
examine the potential of reuse for developing systems.

2.2, Initial View of Reuse

Initially, the project identified the four technical
areas in Figure 1. We could have defined a project
covering all four areas. Since the CAMP project had
completed a domain analysis and was constructing
components, we considered performing a domain
analysis in another unrelated domain. This effornt
would, however, have required more staff and calendar
time than could be justified. So we had to restrict our
atzention to one of the four areas rather than covering

the entire cycle as CAMP was doing,
s Domain Analysis ssssmmmsss)
/1\ |
S| C cl| ¢
ylo ol o
sln aln
t | s Pl s
e | t ol t
m| z al =z
|l a e | u
| e ale
| ¢t tl ¢
(8 & | 4
1 o t]lo
| n ol a
! o |
| b |
|

\i/
<=masm Library Construction smmss

Figure 2-1: Reuse Cycle

3. Where to Begin

From our initial view of reuse in figure 1, we could
initiate a project in any of the four areas. Before we
defined this project, we examined the advantages and
disadvantages of defining a project in each of those four
acas. Below we describe the advantages and
disadvantages for each potential starting point.

3.1. Domain Analysis

Before defining an initial project in domain analysis,
M oganization would want © minimize the
ldvmmofpufamingadmnﬁnmlyﬁsapplyw
organizations that have a well defined market or
product area. The disadvantages apply not only w0 a

76

product oriented organization but also to research and
development (R&D) organizations like the SEI. In the
abstract, the advantages and disadvantages of domain
analysis are reasonably well balanced.

The advantage of beginning with a domain analysis
task are that it captures knowledge and experience of
corporate experts who are always in demand. A
domain analysis uses the artifacts of previous
development cfforts to identify common capabilities or
features of those systems. The means for achieving
these capabilities may be different for different systems,
but identification of altemnative methods for achieving
the same capability provides for parameterizaiion and
flexibility in fumre systems. The domain analysis
should identify solutions to those common problems.
These common problem solutions would then be
integrated together into an architecture to solve future
system’s problems. Finally, the domain of interest can
be reswricted to cover the market areas of a company, a
division, or a department. Perhaps most important, the
results of domain analysis capture the experience and
knowledge of the organization’s experts. Another
benefit of capring corporate knowledge and
experience is that this information can be used to train
new employees. The advantages of defining 2 domain
analysis task are swongly related to product driven
organizations which provide similar solutions to a
common problem set.

The main disadvantage of beginning with domain
analysis is making a large up-front investment when the
quality of the resuits are unknown. An org-nization
which does a domain analysis is making a long term
investment in a particular market or business area, since
the benefits of the domain analysis cannot be realized
until the organization increases productivity and/or
reliability in some future development. There is also no
way 10 validate the resuits of the domain analysis until
the organization constructs another system. Unless the
Oorganization constructs at least two more syswems, the
cost of a domain amalysis will probsbly not be
recovered. Since there have been few domain analyses,
there is not a large body of literature or knowledge on
what the outputs should be ar how to perform & domain
anslysis. Fimally, svailable domain expenise is
absolutely necessary for an effective domain analysis.
mexpetﬁsemymdoaduminnﬂys'a'u
usually in short supply and may not be available.
Without guidance, svailable domain expertise, and the
ability to0 validate the resuits, the large up-fromt

investment necessary for domain analysis seems a very

The advantages and disadvantages of a domain
analysis seem reasonably well balanced in the abstract,
so0 each organization must evaiuate the risk and benefit
to its bottom line. There are some exampies of the
benefits of reuse in the data processing industry.
(LANERS4] The Japanese have also made a long term
investment in reuse and been reasonably successful.
[MCNAMS6] These exampies are not MCCR systems,
but it does indicate reuse has real potental for MCCR
Systems. Domain analysis is ux first step in
constructing reusable resources, and more of these
efforts are being initiated by govemment and industry,
but the results are not yet available. As we gradualiy
overcome the lack of domain analysis experience, and
as the importance of capturing domain expertise is
recognized, more domain analyses will be done, and we
will be able to0 justify the up-front cost. The large up-
front cost may always remain, and can only be justified
by maling a long term business commitment to the
domain. As time goes oa, the advantages of starting
with domain analysis begin to0 outweigh the
disadvantages.

3.2. Component Construction

The potential disadvantages of initiating a reuse
effort with component coastruction without a domain
analysis outweigh the potential advantages. The risk of
making a large up-front investment in component
construction without the benefits of a domain analysis
far outweighs the potential advantages, which apply
mainly 0 a product based orgamization. The
disadvantages, however, apply to SEI as well as product
based groups.

One advantage of beginning a reuse effort with
component construction is that the organization already
has the capability w0 develop domain specific code.
Organizations which develop software for a specific
market like radar systems possess the expertise to
develop radar support software. The work done in
domain engineering is very similar 10 the work done in
the design and coding phases of standard projects.
Unlike domain analysis where an organization lacks
expertise, they do possess the expertise to develop

Another advantage is that this effort builds assets for
the futwe. Like maining or investments in work

stations, reusable resources are fixed assets. The output
of this component construction is concrete, so that it
can be measured and at least examined qualitatively by
the organization's experts. Furthermore, it can be
compared t0 cumrent and previous developments to
determine how adequately it solves current and past
problems. Once again, the advantages of initiating a
reuse effort with component construction are stongly
related to needs and expertise available in product
based groups.

There are several significant disadvantages (o
initiating a reuse effort with component construction.
The main technical problem is knowing what to build.
This problem is similar t0 developing a system without
having a set of requirements. In today's resource
constrained world, starting development without a set
of requirements is extremely risky. Once again, a very
large up-front investment is required, so the investment
in component construction could be § to 10 times the
cost of a domain analysis. [MCNIC88] Furthermore, we
don’t have guidelines or validation techniques for the
reusable resources. Finally, the construction of large-
grained reusable components or tools to generate large-
grained components will cost even more to develop.
Initiating a reuse effort with components construction
require a very large up-from investment and has
considerable risk because of our inability to validate the
results,

The advantages and disadvantages of initiating a
reuse cffort with component construction aren’t well
balanced in the abstract, so we do not recommend
starting a reuse effort with component construction.
After a domain analysis such an investment seems quite
reasonable and is absolute necessary for reuse. An
organization could, however, construct the reusable
components as part of an existing development, basing
their construction on the results of a domain analysis.
In any case, compoaent construction should oaly occur
after a domain analysis,

3.3. Library Construction

The disadvantages of initiating a reuse effort with
library construction appear to outweigh the advantages.
The main advantage is that we all understand the
necessity of comstructing a libeary for reusable
resources, but if we don’t have resources 10 store in the
library, we won't be able 10 recover the cost without
further investment in domain snalysis and domain

77

engineering. The ability or inability to recover one’s

investment is the most significant factor in deciding to

initiate a library construction project.

The advantage to library construction is its
reasonable cost, which appeals to management. The
construction of a library for a single division or
company may not require more than one to two staff
years of effort. Since the library could apply to all
domains and all projects within the company, the cost
doesn’t seem excessive. In fact, it is not unreasonable
with appropriate planning for the library to be useful to
several divisions of a large aerospace corporation. The
key advantage to library comstruction is that it is
absolutely necessary for the uitimate success of reuse.
The storage, control, and configuration management of
the requirements, designs, code, documentation, and
their history is absolutely necessary for the developers
who will apply reusable resowrces. Finally,
management does not have a problem understanding
the need for a library, and they easily recognize its
applicability to several projects.

An organization that constructs a library before they
have identified what they will store in the library may
never realize any bencfit from the library. The cost of
domain analysis and domain engineering may prevent
management from allocating the resources to construct
the reusable resources. The classification techniques
which are most applicable to0 one domain may not be
applicable 0 other domains. Unless the library can
support multiple classification mechanisms, it may not
be able 0 support resources which are constructed after
the library is implemented. In fact, some of the security
reszictions on classified or sensitive resources may
prevent users from accessing the library. Even though
there are several libraries under construction, there is
lintle in the literature on gnidelines and procedures for
library operation.

The recovery of library impiementation costs will
depend on the availability, quality, and applicability of
memmdmtblibtry Some organizations
pian 1o place all software that they coastruct into the
library. This may crease a serious classification and
retrieval problem because the volume of resources can
create more confusion, and there may be very little
that’s reusable. The disadvantages of starting a reuse
effort with library construction are primarily related o
recovering the cost which is related to being able to
retrieve resources that are yet to be built.

The disadvantages of starting a reuse effort with

library construction outweigh the potential advantages
since the developer may never be able to recover the
cost without making an even larger investment. Aftera
domain analysis and domain engineering of reusable
resources, library construction has much less risk. In
fact, the classification of the resources which defines
the retrieval mechanism is derived from the domain
analysis. Library construction before domain analysis
is difficult 10 justify unless one already has a large
collection of reusable resources.

3.4. System Construction

The disadvantages of initiating a reuse program by
consructing a system from reusable resources far
outweigh the advantages. There is great risk in
developing a system from reusable resources without
establishing the applicability, understandability, and
quality of reusable resources. This risk is definitely
unacceptable except for shadow or R&D projects.

The purpose of initiating a reuse project in system
construction is to validate the cost and benefits of reuse,
investigate reuse technology, and provide a reference
point for future reuse. The costs and benefits of reuse
have not been determined empirically, and there are
very few examples of successful third party reuse. By
starting with system construction, these costs and
benefits can be determined by collecting data on the
development. An organization can also investigate the
effectiveness of the reuse technology which was used o
supply the reusable resources. This infarmation is very
important for constructing additional reusable
resources. A project that constructs a system from
reusable resources is certain to encounter unexpected
problems and to gain insight into the solution of some
expected problems. This information is very useful for
construction of additional reusable resources and for
planning and scheduling other reuse development
efforts. The advantges of initiating a system
development with reusable resources can be grouped

The disadvantage of staning with system
construction is the risk inherent in using new and
unproven technology. The risk to real projects of using
third party software can be reduced by prowtyping and
testing the components, but this will certainly reduce
the productivity gain. So, it seems that nothing is really
gained without assuming the tustworthiness of the
resources. Does this mean we are trading reliability for

78

productivity? Any gain from productivity cannot offset
problems in reliability. The gains expected from reuse
can only be assured {f we have reliable resources.
Where can one obtain the reliable resources? Abstract
data types (ADT) can be purchased commercially, and
they are guaranteed, but the gains from these ADTs will
have to be amortized over many developments. To
show significant productivity gains on a few projects,
the resources probably need to be domain specific.
With the exception of the CAMP components, there
may not be another rich and powerful set of reusable
components. The main disadvantage of building a
system with reusable resources is the risk of the
technology. That is assuming the reusable resources
exist at all,

In general, the disadvantages of beginning a reuse
effort with system construction outweigh the
advantages, and we would not recommend it. The lack
of reusable resources and inherent risk to the project far
outweigh the potential advantages. If an organization
could acquire an effective set of reusable resources, and
if the failure of the project to deliver a system is
acceptable, then this may be a viable starting point 0
investigate reuse.

4. Conclusion
In the case of the SEI, we could overcome the

disadvantages of starting with system construction. We.

acquired the CAMP components, and we initiated a
project to redevelop one of the ten missiles from the
CAMP domain analysis. This did not, however, solve
all of our problems. We didn’t have the necessary
missile expertise, and we didn’t have the means to test
the software that was constructed. Raytheon provided
the missile expertise, and the Cruise Missile Program
Office provided the Interpretive Simulation Program for
the testing the final software. So, we initiated a
redevelopment of a Tomshawk missile. From that
development, we lcamned several important lessons
which we will report t0 the community later this
summer.

§. Bibliography

GARGAS6 m Anthony and Pappas, Frank.
eusability Study, Com
Jersey, August 1986.

MCCAI86

MCNAMS6

MCNIC86

MOCNICB8

PRESS83

SOFTESS

STARSS86

ST.DE86

79

Lanergan, R and Grasso, C. Software
Engineering with Reusable Designs and
Code, IEEE Transactions on Software
Engineering, 10(5): 498-501, Seprember,
1984,

McCain, Ron. Reusable Software
Component Engineering, IBM, Houston,
Texas, July 1986.

McNamara, Don. “Japanese Software
Factories”, in Proceeding of the
Software Factory Forum, SEI, February,
1986.

McNicholls, D., et al. Common Ada
Missile Program, McDonnell Douglas
Astronautics, St. Louis, MO, Air Force
Armament Laboratory, Eglin AFB,
Florida, AFATL-TR-85-93, May, 1986.

McNicholls, D, et al. Common Ada
Missile Packages - Phase 2, McDonnell
Douglas Astronautics, St. Louis, MO,
Air Force Armament Laboratory, Eglin
AFB, Florida, AFATL-TR-33-62,
November, 1988.

Presson, Ed, Tsai, J., Bowen, T., Post, J.,
and Schmidt, R. Software
Interoperability and Reusabnlity
Guidebook for Software Quality
Measurement, Boeing Aerospace Co.,
Seannle, Washington, Rome Air
Development Center, Griffiss AFB, New
York, RADC-TR-83-174, July 1993.

Ada Reusability Guidelines, Softech,
Wautham, Massachuserts,
April 1985.

"STARS Reusability Guidebook V4.0,
STARS Applicaton Workshop, NRL,
San Diego, California, September 1986.

St Dennis, R. A Guidebook for Writing
Reusable Source Code in Ada’,
Honeywell Computer Science Center,
Golden Valley, Minnesota, May 1986.

FOSITION FAFER ON SOFTWARE REUSE
Dr. Harrvy F. Joiner
Telos Federal Systems
55 M. Gilbert St.
Shrewsbury, NJ 07702

The issue aof a practical application of reusable software has
been divided into six subissues:

1. Definition of requirements with reuse as an obljective
2. Design of software with reusable components

z. Issues aof reuse with and on existing systems

4. Assisting the programmer with reuse

s. Creating incentives for reuse

6. The Ada language role in reuse

As this outline indicates, much of the life cycle will be effect-
ed by the adoption of a reuse approach to software enqineerina.
Just as education and practice in the hardware part of the elec-
tronics industry have changed dramatically since the days of
individually designed components, the training and procedures of
software engineering will change significantly as reuse of soft-
ware components becomes common practice.

1. PCefinition of requirements with reuse as an oblijective

The user requirements definition and analysis should be independ-
ent of implementation to the greatest extent possible, leaving
the maximum flexibility available for the engineers to determine
the hardware and software solutions. Furthermore, system and
software requirements definition should not be limited by the
availability of reusable software components any more *than it is
by predesigned hardware components. Software requiraments
should, however, take into account the effects of reusability on
the design approach.

A valid obijective that can be stated in the requirements phase is
to maximize reuse of software. Having this objective clearly
stated will be an important incentive during the earlier years of
applying reusable software. Another valid objective is to add to
the reusable components available in libraries.

2. Design of software with reusable components

Designing with reusable socftware components will place a differ-
ent emphasis on the software enQineering effort. The use of
predefined components places greater importance on optimal use of
the engineer’s toolbox and less emphasis on detailed understand-
ing of computer languages and programming techniques. Two exam-
ples of current practices that reflect this difference are seis-
mic processing in the oil industry and hardware design.

Seismic processing includes sophisticated Digital Sianal Frocess-
ing (DSP) techniques applied to large data sets (tens of thou-
sands of time series with several thousand samples each). The
DSF is performed by using a software package which routinely
contains over 100 components, each executing one or more tasks.

80

such as band pass filtering, sorting, wavelet shaping. or other
static or dynamic corrections to the data set. The necessary
parameters and the appropriate data set are passed to each compo-
nent or module as required. The geophysicist (seismic processor)
may generally choose the order of processing and the components
to be used along with the specific parameters to be used for each
process. The processing sequence(s) will vary depending on the
quality of the data, the objectives of the survey, and form of
the presentation. The whole process can be properly viewed as a
high level design with reusable components. Some of the modules
will have been in the inventory since the mid-é60°g¢ while others
will have been incorporated very recently in this rapidly de-
veloping area of signal processing. A new geophysicist will
require a period of months to become familiar with the processing
package in order to take advantage of the variations and choices
in components for filtering, migration, scaling, and other func-
tions. At present most of the required information for this is
contained the user’® s manual for the seismic package. The e:xperi-
enced processor will be able to familiarize him/herself with &
new system or package in a much shorter time because of his/her
knowledge of other similar packages. The basic process is simply
one of designing a specialized DSF program using reusable soft-
ware componesnts,

The second example ise probably a more familiar one: designing
hardware from the enormous inventory of electronic parts and
processing chips available from today’'s manufacturers. 0Only a
very small percentage of a hardware system today is created from
scratch, and the hardware engineers manage to obtain the required
specifications, test data, etc. to acccmplish the task from
vendor information, catalogs. and other sources.

A critical element in the design from reusable componerts ap-
proach is that the design may accomplish its obijectives in a
different manner and that the engineer should be trained to view
the problem from this different perspective.

Z. Issues of reuse with and on existing systems

A critical issue relating to the millions of lines of existing
code is how to determine what code is suitable for reuse and how
to approach this task in a cost-effective manner. Scme current
programs, such as the Army Tactical Command and Control System
(ATCCS), are designed to provide a source of reausable components,
but guidance for which components are to be reused and how they
are to be certified or qualified for reuse has not been defined.

The ATCCS example illustrates a large, domain—-specific system
that should be able to take significant advantage of reuse in
fire support functionms, battlefield plarning, maneuver control,
logistics, and systems operations and interfaces. Reuse is being
designed into the system architecture with the adoption of the
Common Hardware/Software system that should insure reuse of many
of the support, communications, and system software components.
When it comes to the applications software, the situation is .PA
somewhat different. Two of the five ATCCS components (AFATDS and
MC) are well into the development programs without clear auide~

. 81

lines cn what qualifies for reuse or should be designed for
reuse.

4. Assisting the programmer with reuse

A maior prerequisite for widespread reuse of software camponents
is to obtain the active cooperation of the designer/programmer.
The principal requirements for this cooperation are:

o Ease of accessing the reusable components

(o] Knowledge of the requirements to make the components
work in the new situation

(=] Confidence that the reused component will not cause
problems

As indicated by the preceding examples, these can be overcome
with current technology and adequate training in the use of
individual reuse libraries. Although much more can be accom-
plished with databases, fully commented specifications. and
information regerding algorithms used, test results. i1nterface
requirements, and limits of operation, a willingness to adapt
design and coding practices to maximize reuse of caode from corpo-
rate and public reuse libraries will go far.

Training in ceollege and on-the—-job in how to design for reuse, in
familiarizing the software engineer with specific reuse li-
braries, and in coding practices that include interfacing with
and using the code of others will develop the skills and atti-
tudes needed to take advantage of reuse libraries as they are
created. Computer science majors are encouraged to believe that
writing code is the ultimate function of system design and devel-
opment, placing the emphasis on solution techniques that are
designed for small systems and problems. This approach also
encourages a pride in code authorship that makes it difficult to
accept the requirements for reuse of someone else’s code on large
systems. Froper training in the advantages and techniques of
reuse can eliminate these problems, Jjust as they have in the
transition from design from scratch to using off-the—-shelf compo-
nents in the hardware field.

In order to perform adequate training in reuse, colleges and
universities must have access to one or more significant reuse
libraries. Students who become accustomad to operating with
these reusable components will carry over the habits and famil-
iarity with the software to their work environments.

S. Creating incentives for reuse

While training and the accumulation of reuse libraries will
provide some incentive to the aggressive software engineer, real
progress will be made only by creating significant incentives and
reducing the true stumbling blocks to reuse in practice. These
changes need to occur at two levels: those that effect corporate
external relations and those that involve the internal management

82

P

of saftware projects. The changes required are mostly peolitical
and "cultural" in nature, not technical.

The first category of incentive (corporate extermnal incentives)
must address corporate profitability and liability. Reuse will
become a significant factor in the near future (5-1%5 years) due
to its long-term savings and the increased competition for soft-
ware development work. In several areas, such as COBOL financial
packages and the Japanese software factories, reuse libraries
have become common practice and the only way to stay competitive.
They are limited now to certain restricted applications or hard-
ware/software environments, but will become increasingly wide-
spread.

Because no significant application of reuse is currently being
made there and reuse setup costs time and money, corporate prof-
itability in the Government sector is negatively affected for
reuse. The disincentives abound in the cost-plus development
contracts that encourage reinventing everything from the wheel to
the beallistics software package. Firm Fixed Frice contracts are
even warse because the development of reucable code is more
costly, even i+ the long—term bernefits are enarmous. Government
incentives through extra awards for contributions to or applica-
tions of reuse could be provided as value engineering similar to
the hardware program. Numerous Government programs are discussing
the development of reuse libraries. but none have incentivized
these projects for the corporation. Testing, documentation. and
generalication all add to the expense and usefulness of library
comporients and must be supported.

The related iszues of ownership and liability for components in
the Government reuse libraries have not been addressed either. A
royalty arrangement might provide real incentives for corpora-
tions to contribute to reuse libraries, but determination of the
limits of liability must be in place at the same time. The
profit and liability must balance in a reasonable way.

When the profit motive strongly supports reuse, the second issue
of internal management support will be incenti rized. Significant
support for reuse by the team leaders, supervisors, and managers
of the company will enforce reuse by the designers/programmers.
Code reviews with specific attention to reusable components,
reuse@ competitions between project teams for contributions to and
applications of reuse, and management commitment to the extra
costs of developing and maintaining reuse libraries are all
important ways to implement a corporate reuse strategy.

é. The Ada language role in reuse

Ada supports reuse through the implementation of packages and
generics., including particular support for information hiding and
abstraction. The separation of specifications from bodies in the
package construct encourages full commenting in tha specification
for the potential user of the package while controlling access by
the user to the actual implementation in the body. ARAda incorpo-
rates reuse in the language definition through the use of prede-
fined packages (TEXT_I0, e.9Q.).

83

The commenting of the specifications could easily provide a
mechanism for supplying the potential user with his/her required
irnformation, including test data, algorithm specificatioen, limi-
tations on range of use, and interface requirements.

7. Reasons for attendance

I have 12 years experience in seismic processing. technical
studies and modeling (DSF), and project management. The past
three years, I have worked on Government projects, primarily in
Ada, reviewing management and technical issues. My current
responsibilities include support for the Advanced Field Artillery
Tactical Data Systems (AFATDS), part of ATCCS, in the areas of
project management, software metrics, design met-odeclogy. and
software reuse.

The i1ndustry will accomplish the required Z-5 fold incresse 1n
productivity over next decade or so only through the active
implementation of reusable software components, desians. and
templ ates. My experience indicates 1t can be done and, to remain
competitive, 1t must be done.

84

MAXIMIZING ADA REUSABILITY

Reusability has become the latest "buzz-word" of the
Ada community. It has many different conflicting
definitions. These definitions run the gamut from including
any design or code used more than once to only code used on
two or more widely dissimilar projects. The community also
seems to be in violent disagreement as to whether
reusability exists or is just a myth. Some of the statements
have been; "of all the code written in 1983, probably less
than 15% is unique”,"very little research being conducted

in Ada Reusability"”,"4@ to 6@ percent of the code was
repeated”, "reuse factors of 85% have been reported"”, "no
credible methodology...to provide the reuse of source code
between widely dissimilar application areas”,"68 to 95% of
existing software (was reused)”,”no reliable method of
storing or retrieving items"”.

The first step in maximizing reusability is to define
it. Since one major purpose of reusing software is to
reduce the effort needed to produce a program and another is
to reduce the cost of maintenance, the most liberal
definition should be used. Therefor reusability could be
applied to code, design, or requirements definition that can
be used more than once. The real key to maximizing
reusability is to start with the requirements definition.

Requirements definition must be performed in a manner
that will promote reusability in software design and
cnding. Object Oriented methodologies seem to be gaining
favor in major Ada projects. Therefor an Object Oriented
requirements definition methodology should be carefully
employed in order to promote reusability.

The impact of not laying a firm foundation for
reusability during the requirements analysis phase of a
program can have disastrous results. An example of this can
be found in a large Ada project started in 1984. The
original contract was awarded for 33 months (200 - 300
KLOC). After 4 months the customer made an assessment that
insufficient progress was being made on the contract.

After 7 months the contractor informally notified the
customer of a potential growth in the contract. The causes
of the growth were failure to fully comprehend the scope of
the user requirement for automation, overestimation of the
contractors ability to write software in a new language
(Ada), bid errors, and misinterpretation of solicitation
requirement for quality of product for test.

85

After 9 months the customer determined that the reasons
for program growth were; contractor underbidding, an
increase in the lines of codes, and no requirement for a
functional definition. After 37 months the contract was
extended to 48 months. The contract was eventually
completed after 58 months (over 400 KLOC).

It was determined that one of the major reasons for the
program growth was the inability of the contractor to
effectively transitior from a set of functional requirements
to an object oriented methodology. This resulted in a much
lower reuse factor. The contractor did manage to have
approximately 25% of the code in a common library. However,
during the last 6 months of the development the code size
shrunk. This was due to the fact that the contractor had
discovered many cases of duplicative code. It has been
estimated that over 50% of the code could have been shared
if the contractor had started with an object oriented
methodology during the requirements analysis phase.

The proposed object oriented requirements analysis
methodology is based on the identification and description
of objects, states of the objects, and processes that
transform an object from one state to another. The first
step is to structure the requirements definition activity
into several stages:; object identification, object
description, object states identification, object states
description, process identification, and process
description.

Maximizing reusability starts with the identification
and naming of the objects. A generic method that does not
limit the design or implementation should be used. This is
also the stage of development in which the initial structure
of the reusability library retrieval system is determined.
Classes and subclasses of objects may have to be identified
in very large and complex systems. The retrieval system
should be structured so that it doesn’t become overly
complicated.

Providing object descriptions that support and promote
reusability is very difficult. A dictionary of acceptable
and generic keywords and phrases has to be established. The
description of each object should contain its attributes.
The attributes of different objects have to be compared in
order to identify commonality of terms. The attributes
should also be analyzed in order minimize the semantic
differences.

86

The states that an object can exist in must be
identified next. The states of the different objects should
be compared in order to identify additional objects that
belong to the same class. Care must be taken to avoid
semantic problems. The object state descriptions can help
if they are written using a consistent methodology.

The final and most critical step is to identify the
processes that transport an object from one state to
another. The process description is key to obtaining a
clear identification of equal or similar processes. These
processes will drive the design and code directly. A
library of processes with a powerful identification and
retrieval capability should be set up.

The above methodology for implementing an object
oriented requirements analysis opproach will serve as a firm
foundation for programs that maximize reusability. Although
it maximizes reusability within the project it would also
serve as a basis for sharing design or code reusable
components between projects.

However, reusability will never be implemented to any
significant degree until software purchasers provide enough
incentives to the software developers. These incentives
must result in increased business and profits for the
developer that reuses software if they are to be effective.

Stanley H. Levine

Technical Management Chief for
the Project Manager of Field
Artillery Tactical Data
Systems

87

POSITION PAPER
REUSE IN PRACTICE WORKSHOP

Coming to Terms with Terminology for Software Reuse!

A. Spencer Peterson

Software Engineering Institute
Camegie Mellon University

Piusburgh, PA 15213
NET: asp@sei.cmu.edu

Abstract

There are problems with the use of many of the terms
used in software engineering when applied specifically
to reuse. Three terms of particular interest, taxonomy,
software reuse, and domain analysis and some problems
with their usage are discussed. The specific problems
with these terms are generalized and several solutions
are given, the most important being the introduction of
the concept of a reuse process model 1o provide context
and an overall view of the potential areas of discourse
in reuse. Several new terms are proposed for future use
as well as defintions that are meaningful in the context
of software reuse.

1. Introduction

It is not possible to have an intelligent discussion or
writt a technically meaningful paper without a
vocabulary 0 describe the essence of the thoughts the
speaker or writer is attempting 10 convey 1o the listener
or reader. That vocabulary must have two properties.
First, it must be broad enough t0 describe the wide
range of ideas that a user may wish © coavey. There
must be enough terms to describe the subject area.
Second, the terms in the vocabulary to be used must be
meaningful ©0 both parties. The terms must have
definitions. Furthermore, for use in technical
discourses, the definitions must be few and precise
enough to be unambiguous.

The English language now has over 500,000 ierms
with definitions totalling 59,000,000 words, according
10 the lastest version of The Oxford English Dictionary
(OED) just released [OXFORS9). Even this number of
terms is inadequate for the breadth of discourse in all

1Sponsored by the U. S. Department of Defense.

areas using English as the media for the captre and
exchange of information, as new terms constantly come
into being. English, overall, is inherently ambiguous
due to the large number of meanings for many words in
the language. The OED carries 200+ definitions for the
word “set” used as a verb and over 50 more when one
includes its usage as a noun. Even after noting that the
OED carries many obsolete definitions for the purpose
of tracing the history of word usage, it is no wonder
why people writing natural language processing
programs are having difficulties,

Technical jargon suffers even more from the problem
of ambiguity because terms can pick up a special
meaning within individual organizations that is precise
and meaningful within them but ambiguous and
confusing to outsiders. Software reuse has many
problems to solve before it becomes common practice
in the software engineering community. One probiem
is that there is no standard definition for the term
“software reuse” itselfl How can we say we practice
software reuse when we (experts!?) don't agree on what
it means, much less the community at large?

2. Problems with "Standard" Terms

Three often used te-ms illustrate the problem with the
vocabulary for reusc. The term “taxonomy” is misused
by many authors to mean the list of terms produced by
doing a classification for a collection of objects. This
usage is incorrect. A taxomomy is the process and
procedures for creating a classification for a group of
objects and is formulated and described in terms useful
to those doing classifications. Biologists call a group of
organisms that fits one of the categories of the formal

88

classification units they use, such as phylum, genus or
species, a taxon. We can take this word and create a
new definition that fits a need in our discussions.
Section S contains a glossary for the new terms and
modificd definitions introduced in this paper and are
printed in italics for easy identification.

The word °software’ in the term “software reuse’ is
not adequately defined to0 provide any meaning © the
word that is proper for a useful definition of software
reuse. Software is defined in (IEEES88] as "Computer
programs, procedures, and possibly associated
documentation and data pertaining to the operation of 2
computer system.” Do we look a reusing entire
computer programs? The current state of the practice in
software reuse is focused on reusing pieces of computer
programs, in particular code components. Thus, it is
necessxry to extend the definition of software’ in a
widely used standard glossary or dictionary to get a
meaning that is adequate for use in OUR discourses on
‘software reuse’. Section 5 contzins a proposed
definition for software and software reuse.

The term 'domain analysis’ suffers from a similar
problem. The word ‘domain’ does not have a definition
that is usable when one attempts 0 analyze the two
words in the term. The only useful definition in several
dictionaries is derived from mathematics and the word
"set”, a collection of clements, is used. But the
software engineering community talks about things
such as abstract data types, communications, missiles,
control systems as examples of domains. These are
things where code components and/or whole systemns
are developed for use on computers. But this doesn’t
provide enough mformation 0 lead t0 a good
definition. So we must try to analyze what we mean by
the term ‘domain analysis’ to derive a usable definition
for 'domain’,

To do such an analysis, we must try to envision
where domain analysis fits into the overall process of
reuse and the software lifecycle and determine its inputs
and outputs, like the models we derive during systems
development. What information sre we trying 0
capture whea we do "domain analysis’? We want to
extract the commonality and differences in the various
components and systems developed that achieve the
desired capabilities in the area of interest. With this
and the answers 10 other such insigitful questions, it is
possible to come up with a definition for domain that is
useful, both by itself and when we creste compound
terms such as domain analysis, domain engineering,

and domain model, all used in Section 4 and defined in
Section §.

3. What can be done to solve the Problem

What have we seen in the three cases of attempting 10
define terms that are given above? First, we must be
careful not to abuse or misuse terms that already have a
precise and useful definition in other contexts or areas,
or at least admit to the non-standard usage of a term and
provide the reader with the definition of the term as it is
used in later discourse.

Second, we must agree that some terms used in
software engineering are inadequately or
inappropriately defined for use in the discussion of
reuse, to change their definitions as necessary, and get
the changes included in standard glossaries and
dictionaries used in our field. Only after we agree upon
1 set of terms and definitions that fits our needs and get
them published in a widespread way can authors write
more precisely and readers understand the intended
meaning.

Third, and most important, the first step towards the
solutions listed above is: we need a model for the
process and activities that play a part in reuse. A model
provides the context for using terms and for naming and
describing processes such that the meanings are well
understood. Such s model must be abstract enough to
not be overly constraining and complete enough to
present a fairly comprehensive approach to
understanding the many facets of software reuse. Such
a mode! is considered in the following section.

4. A Process Model for Reuse

The modei depicted in Figure 4-1 on the next page is
not to be considered as the only approach to a process
model for rease, but it illustrates the benefits of having
a model and, in many ways, it reflects the SEI Software
Reuse Project’s view of reuse. It is not possibie 0
provide anything close to a comprehensive description
of the mode! as such a description would be the subject
of an entire paper in and of itself. The description
following the figure provides enough information to
give context and mesning 0 many of the terms and
definitions given later in Section S.

Reuse in Practice
TECIOMLOSY _SASE ﬁ: ADUsE_paacTICES
—) MW _APPLICATION
L ACUSE_£
—/
eony } :Twnmﬂu : Mn.n
[
DONALN_AESOURCES
OUNAIN_ANALTSII \m'“'"' DORALX NS Y NEE_PLATFOAN
— :
r i OORALN_NESOUNCES
Jmmuu _l PORTED SV
ADAPTIVE EN0 ®ODIFIED_STSTER
castINeSe ¢ sagcramrinect
mm /
AR v

Figure 4-1: Process Model Incorporating New Reuse Practices

First, note the area enclosed by the polygon labeled
Reuse_Practices. It surrounds a set of activities that
ought 0 be performed by most software engineering
organizations that do recurring work in a domain.
Artifacts from previous developments are extracted
from an existing base of software, and with this data
and other information such as underlying theory,
current and emerging relevant technologies, and the
knowledge of personnel experienced in the domain, a
domain analysis is perfarmed. Its outputs are primarily
8 domain model and a software architecture, Domain
engineering is performed 10 build and control a library
of reusable software resources. Projects working on
spplications in the domain of interest can drsw upon
thoss resowrces while performing reuse engineering 10
produce a new application in the domain, Feedback as
to the effectivencss of the resources, suggested
modifications, exc. is given 30 that the domain data can
be updated as appropriate,

The bodom srea of the figure illustrates the type of
reuse that is actually practiced by some groups doing
substantial software development work. The existing
software base is searched via some mechanism for an

artifact that is potentially reusable. Adaphve
engineering is pesformed to modify the artifact for use
in a2 modified system or on a new platform. This
process can be improved by implementing the new
reuse activities given above. Domain engineering
provides a better mechanism for more successfully
locating candidate resources for reuse, and feedback
can ensure that missing resources oc those with
problems are created or modified to fit ongoing needs.
Note the use of the two terms artifact and resource.
Some would claim they are the same. We believe that
some artifacts may be resources, but most are not
becauss they do not have a high degree of reusability.
Any development process results in artifacts, but few
can deliver good resources. A good resource for reuse
must have multiple picces that reiate t0 one another.
These pieces provide useful information that is
spplicable at different phases of the development
process. This entity with reisted reusable resources is
an asset and is the basis for developing a good software
library.

90

§. Derived Terms and Definitions(A Partial
Glossary for Reuse)
The terms and definitions are taken from a draft
update to ANSVIEEE Sud 729 (Glossary of SW

Terminology) (IEEES88], except where the term is
marked with an (M) for Modified where inserted text is
enclosed in [J, or with a (*) signifying a term that is not
defined in the [EEE draft Other comments are
enclosed by () and placed at the end of the definition.

abstract data type.
A data type for which only the properties of the
data and the operations 10 be performed on the
data are specified, without concemn for how the
data will be represented or how the operations
will be implemented.

sbstraction.
(1) A view of an object that focuses on the
information relevant to a particular purpose and
ignores the remainder of the information. (2) The
process of formulating 2 view as in (1).

adaptation data(M).
Data used to adapt a program [or component] to a
given installation site or to given conditions in its
opfnnomlenvummem.

parameter(M).
A variable [or placeholder] that is given a value
{or other appropriate information] to adapt a
program [or component] to 2 given installation
site or to given conditions in its operational
environment.

adaptive engineering(*®).
The process of modifying a system or component
to perform its functions in a different manner or
on different data than was originally intended.

adaptive maintenance(M).
Software maintenance performed to make a
computer program [or component] usable in a
changed environment.

application-oriented language.
A computer language with facilities or notations

applicable primarily to a single application area.

(This fits the Neighbors concept of DOMAIN
LANGUAGEs.)

architecture,
The organizational strucmure of a system or
component.

artifact(®).
Any product of the software development
process,

asset(*).
A set of reusable resources that are related by
virtue of being the inputs 1o various stages of the
software lifecycle, including requirements,

(Note: an asset can be a design and the control
code for using other assets in the library in a
more powerful way. Assets are the fundamental
clement in a reusable software library.)

component.
One of the parts that make up a system. (Note: a
component is some useful portion of a computer
program. It may be subdivided into other
components.)

control abstraction(®).
(1) The process of extracting the essential
characteristics of control by defining abstract
mechanisms and their associated characteristics
while disregarding low-level details and the
entities to be contolled (2) The result of the
process in (1).

data abstraction.
(1) The process of extracting the essential
characteristics of data by defining data types and
their associated ﬁmeuoual characteristics and
disregarding details, (2) The
result of the process in (1).

domain(*).
The set of current and future systems/subsystems
marked by a set of common capabilities and data.
domain analysis(*).
(1) The process of identifying, collecting,
aganmg.ana!ymg.andrepmenungadommn
architecture

model and software frommesmdy
ofmmngsysuns.undulymgtbeo:y emerging
technology, and development histories within the
- domain of interest. (2) The result of the process
in (1).
domain engineering(*).

The comstruction of components, methods, and
tools and their ing documentation to solve

the problems of system/subsystem development
by the application of the kmowledge in the
domain model and software architecture,
domain modei(*).
A definition of the functions, objects, data, and
relationships in a domain.
functional abstraction(*).
(1) The process of extracting the essential
characteristics of desired functiomality by
defining it abstractly along with its associated
behavioral characeeristics and disregarding low-
lovel details. (2) The result of the process in (1).

master library.
A software library containing master copies of
software and documentation from which working
copics can be made for distribution and use.
(This should be meticulously maintained and
controlled by a special group of rewse engin.:rs
and librarians.)

91

modularity(M).
The degree 0 which a sysiem, computer program
{or code component] is composed of discrete
components such that a change to one component
has minimal impact on other components.
Software maintenance performed (0 improve the
performance, maintainability, or other attributes
of a computer program [or component].

production library.
A software library containing software approved
for current operational use.

resource(™).
Any software eatity placed into a software library
for purposes of reuse.

(1) Permanent removal of a system, component [,
or resource] from its operationai environment (or
the master library.] (2) Removal of support from
a operational system, component [, or resource].

The deg'ee o which [a] software (resource] can
be used in more than one computer program [or
system, or in building other components or parts.)
reusable software(®).
Software designed and implemented for the
specific purpose of being reused.
reuse(*).
The application of existing solutions to the
problems of systems development.

reuse engineering(*).
(1) The apglication of a disciplined, systematic,
quanuﬁab approach to the developmﬂu.
operation and maintenance of software where
reuse is a primary consideration in the
(2) The study of approaches as in (1). {The same
definition as for ’software engineering’ given in
the [EEE standard except for the addition of the
phrase beginning with "where".)

software(M).
Computer programs, [code components and other
anifacts], procedures, and possibly associated
documentation and data pertaining to the
operation of a computer system [or its
components].

soltware architecture(®),
The packaging of functions and objects, their
mmmmmmpmw

aoftwtelibtty(M).
A controlled collection of software [resources)
and related documentation designed to aid in
software development, use, [reuse], or
maintenance.

software repository.

A software library providing permanent, archival
storage for software and related-documentation.
{The key word is "archival’. Also note the word
*control’ is not mentioned. }

software reuse(*®).
(1) The process of impiementing new software
sysiems and components from pre-existing
software. (2) The results of the process in (1).

A document [or other media] that specifies, in a
completc. precise, verifiable manner, the
requirements, design, behavior, or other
characteristics of a system or component, and,
often, the procedures for determining whther or
not these provisions have been satisfied.

taxon(*).
A group of resources constituting one of the
categories in a taxonomewric classification for
reusable software in one or more domains. {The
plural is taxa) {Note: The American Heritage
Dictionary's (AHD) only definition is cast in a
biological context. }

taxonomy.
The science, laws, or principles of classification
[AMERI8S].

6. Conclusion
The problem with the terms and definitions used in

"software engineering that are of importance w0

dicussions on reuse has been examined and several
solutions offered. The most important of these is the
concept of a model to provide a foundation for
discussion and context for an examination of
appropriate changes to existing terms and definitions.
The model also provides a method for creating new
terms with good definitions that will have meaning
when used in future work in software reuse.

7. Bibliography

(AMER185] The American Heritage Dictionary,
Second College Edition, Houghton Mifflin, Boston,
MA,, 1985,

(IEEES38) Radatz, J. et al., Draft Glossary of Software
Engincering Terminology(Update to ANSIAEEE Sud
729-1983), Instinste of Electrical and Electronics
Engineers (in review), August 15, 1988,

(OXFORS9] The Oxford English Dictionary: Second
Edition (Simpson et. al., editors), Tarendon, Oxford,
England, 1989.

92

REUSE EXPERIENCES/ENHANCEMENTS - A WHITEPAPER
REUSE IN PRACTICE WORKSHOP

Edward W. Beaver
Revised June 15, 1989 .
Copyright 1989 Westinghouse ESG, Baltimore Md. 21203

1. BACKGROUND

Beuse is initially defined by the industry as reapplying the same
software (modified or unmodified) to a different system.

The industry has a divergence of opinon as to the scope of the reuse
problem. One end of the spectrum believes that reuse is a major technical
challenge to facilitate "automatic recompaosition” of software op.
reapplication to a similar system. The other end of the spectrum advocates
that reuse is simply a management problem of managing the library of
available software and making it readily available to engineers for reuse.
This paper describes the author's personal experiences and judgements on the -
software reuse issue.

The domain of a software item is the scope of its functional
performance for a particular type of product in a particular environment. In
that sense, it is analogous to the analysis made of a product's features to
address a particular system problem. Thus the scope of the domain analysis
can proceed from the system problem and then characterize the software
product features and environments. Engineers who conduct domain analysis
must be knc:vicgeable in the potential scope of all three of these items.

Westinghouse ESG Aerospace Software Engineering Department's
experience in reuse dates from 1978, when portions of an F-4 Weapon System
Operational Software, design, algorithms, and documentation were reapplied
to other F-4 programs. Other 1980s experience has experimentally
reappplied test systems and portions of mode software between radars. In
other domains, proposal, mode design documents (MDDs), and software
documentation materials have been "cut-and-pasted” as useful between
proposals and projects. In each of these experiences, the reuse was done
manually, based on an individual engineer’'s knowiedge of the application and
the availablity of the existing materials, as well as a common environment
that allowed an easy reapplication of the materials.

Reusa should be defined as reapplying any portion of the systems or
softwars engineering technology applicable to the definition, design,
development, and test of a system and/or software product in a similar
domain. Automatic Reuse can be developed by assessing the elements
present in manual reuse and defining how an automated browser or composer

might use them.
EWB-REE081589-1/8

93

2. ELEMENTS OF SOFTWARE REUSEABILITY

Reuse is only valuable if the problem domain, possible solutions, and
environments are compatible or similar. Reviewing and analyzing the
problem domain, the potential solutions, and the environments is defined as
domain analysis. '

Reuse applys if the domain analysis [1] yields similarities in the
problem domain of system functions, system interfaces, operating
concepts, and operations intrinsic to the processing of functions, [2]
determines that existing solutions are sufficient for the needs of the
system, and [3] finds compatible or adaptable environments for the
components or units.

Problem domains for embedded real-time mission-critical systems
follow the system technologies themselves: airbormne fire-control radar,
airborne early waming (AEW) radar, ground based radar, shipboard radar,
electronic warfare (EW), electro-optical (EO) systems, communications and
navigation (CNI), command and controi (CC), weapon control, mission
control, telemetry processing, ESM/intelligence, etc. Each problem domain
itseif is subject to the functional scope of the hardware and the technology -
level. Further technology developments should aiso be anticipated as new
probiem domain requirements.

3. MULTIPLE LEVELS OF REUSE

Within the broad definition of reuse, seven levels can occur for a
problem domain and solutions as shown in Table 1. Each level can potentially
be reused. Specifications are treated as Sub_Configuration_|tems (SCl's)
with Specification_Components (SPC's) comprised of Description_Code (DC)
which represent the specification text. Computer software is treated as
Computer Software Configuration ltemns (CSCI's) with Computer Software
Components (CSC's) and Units written in Source_Code (SC).

4. COMPATIBLE OPERATING ENVIRONMENTS

After satisfying the common problem and sufficient solution criteria,
the issue of compatibie environments remains. This has a scope which
includes the processing type, processor type/scale, language, operating or
run_time_system, requisite libraries, test results instrumentation system,
and development support computer system.

Compatibility can occur with a range that varies from
high_compatiblity for a machine-independent software component that can
be moved easily between systems, to low_compatibility where only the
software component design can be moved manually between systems.
Examples of varying compatibility are listed in Table 2. No language has a
monopoly on highly compatible reuse ~ this implies reuse is language

independent - aithough some languages are easier to reuse than others.
EWB-REE061589-2/8

94

Reuse 15 dlrectly dependent on the availability of a lnbrary of
software cn.iponents at all levels. Widespread or “popular”® reuse will only
occur if there is a marketplace for CSC's/CSU's in SC and SPC's in DC. The
reyse marketplace is sustainable if:

1. the customer procures components as well as systems

2. the contractors deliver components as well as systemns

3. a forum is available in which to exchange components

4. the components are delivered in, and described in, a recognizable,

standard form on which a "comparison shoppers” decision
can be made

6. PROBLEM SIMILARITY VIA GENERIC SYSTEM MOODELS

One method of enhancing reuseable component descriptions in a
recognizable form is to create generic models for realtxme processing
systems of each generic type: radar, EW, EO, CNI, c31, ESM/, mission,
weapon_control, telemetry, etc. These generic models would have to use
standard reaitime system models (TBD) and be comprehensive enough to -
cover all current and anticipated applicable generations and operating
concepts of each system type. The capabilities in each system would be
described by the SPCs, CSCs, and CSUs comprising the system. Hopefully,
these components would be selected from the reuse marketplace. As
anticipated new systemns develop, their new components would be added to
the reuse marketpiace with the appropriate extensions to the generic models.

At the Westinghouse ESG, a Concurrent Managed Mode (CMM) mode! and
a reaitime pipeline (RTP) model is being used for radar system development.
Generic extensions of the CMM and RTP to domain analysis and reuse
evaluations are being considered.

7. BEUSE 1S ONE PART OF A SOFTWARE ASSEMBLY LINE

The System_Requirements, Timeline_Sizing, and Process_Compostion
expert systems of the Software Assembly Line (SAL) of Figure 1 could
utilize components from the Reuse Marketplace. These three expert systems
are only about 1/3 of the total effort required to automate the software
development as envisioned in Figure 1. Significant inventions are required in
several areas. Only a govemment/industry couid attempt to create the
capability of Figure 1. Current management practice would use different
parts of the SAL at the Software Development Facility (SOF) and the
Software Test Facility (STF).

EWB-REE081589-3/8

95

TABLE 1 - Levels for System and Software Reuse

LEVEL DOD-STD-2167A MIL-STD-483

Proposal, Proposal’ Proposal’

System/System_Segment, Specification A_Spec

or Configuration_Iitem (Cl) (SPC)
System Capability or Mode MDD’ MDD’
Requirements or Development SRS/IRS BS_Spec

(Functions) (Functions)

Preliminary Design SDD/IDD (SPC,CSC's)
Detailled Design SDD/IDD (SPC,CSC's)
Source code . Product CSU's CS5_Spec (CPC's)
Test Plans/Procedures STD (SPC) Specification -

‘non 2167A/483 document used by WEC System & Software Engineering

TABLE 2 - Compatibility Variations in Reuse

High C il
CSC in FORTRAN, JOVIAL, C, Ada — same processor type/scale/OS/library
SPC in ASCHl Text

Medium € b
CSC in FORTRAN, JOVIAL, C, Ada requiring special O.S. or Library
or using a different processor type/scale

Low C fibili
CSC in Assembly Language, RTL, or Microcode

CSC in Assembly Language, RTL, or Microcode
with ISA unavailable or Development System not transportable
CSC in FORTRAN, JOVIAL, C, Ada to a system where the compiler,
Run_Time_System, and Development System are not available

EWB-REE081589-4/8

96

' 1 3Yn9l4
41S PuUe 43S uo (TvS) INIT A1GWISSY IHVYML40S

svaviva ‘HONY ¥OSSII0Md "911 IdS ‘2171 NSI/IS)
NOILY LNIHNYLSNI SWHLIHO9TY SWHOJSNYML SINITIHIL
OIYYN3IS 1631 SMO14Y 1YQ SNOILINN/SIQ0/SILY LS

ﬁ s|00)Yje 0) Hsp7
SWILSAS a _m_
14343 30s
NOILINAIY Y LIVA
NOILY INIFHNYLSNI NOISI23a 5
WH1I409TY
-
SWILSAS SWILSAS SWILSAS
14¥3dX3 143dx3 143dXx3
OIYVYNIIS NI3HD NOI111SOdHO0)D
1831 WH11409 1Y $S3J04d
. ‘
_ | .
)) w
IN90TIVIA HINIISIA u o
©
\\\N\\\\N\\N\\\\\\\\\\\\\V\\u ..nlu
S
W]
iy (Comosa > i
/4
s
W
Py ° ® e o ® ®

8. DOMAIN ANALYSIS EXAMPLE - AIRBORNE BADAR

Airbome fire control radar domain analysis includes the functional scope
of the radar hardware and its technology level, the system functions/modes,
future radar technology trends, the operating concepts, the radar system
interfaces, and the role of a CSC/CSU in a radar operation.

The radar architecture is the functional scope of the radar hardware and
its technology level (i.e. the generation of radar development) ; it is a key
part of the raclar domain. Eight generations are apparent:

- Gimbaled, analog non-coherent scanning; monopulse

- Gimbaled, analog coherent (PD) scanning; monopulse

- Gimbaled, digital coherent (PD) sequential lobing; monopuise

- Passive array, digital coherent (PD) monopuise

- Active array, digital coherent (PD) monopulse
The radar system functions or modes could include:

- Low, Medium, High PRF (Non-coherent, coherent)

- Search /Track - Missile Guidance
- ldentification - Missile Warning
- Kill Assessment - Passive

- Ground Map / DBS / SAR / ISAR

- Air-To_Ground Ranging (AGR)

- Terrain Avoidance /Foliow (TA /TF)

~ Each function or mode has functional performance attributes within which
a software item or component must fit. These attributes for a candidate CSC
are to be examined by a software reuse browsing or recomposition tool. For
a radar CSC, the attributes of a CSC's description can be listed within the
scope of the radar problem domain and its elements:
- Purpose and function in the CMM/RPO and Operating Concept
Single mode/interieaved operation
VvS.
Avionics Interface, Manage, Schedule, Control, Measurement,
Signal Processing (SP), Data Processing (DP) steps
- Measurement Structure
» Performance per antenna, receiver, and power gains
- Target capacity ‘
- Timing/sizing with respect to the CMM/RPO
- Interfaces - Mission, INS, EW, radar equipment
- Related CSC's/Units and Specification Code (SPC)
- Applicable processor environments
- Applicable development environments

EWB-REE081589-6/8
98

. B

GTE
Software Reuse
for

Information Management Systems

:\"ne,\ (_, 0.\\‘?..&\

14 April 1989

GTE Government Systems Corporation
Strategic Electronic Defense Division
National Center Systems Directorate

1700 Research Boulevard
Rockville, Maryland 20850-3181

99 .

14 April 1989

GTE Government Systems, National Center Systems Directorate (NCSD) in Rockville, MD has gained
experience in the area of software reuse as a resuit of an ongoing Imagery Information Management
System (IIMS) Reuse IR&D project. This IR&D etfort began in 4Q88 and grew out of an examination of
existing information management systems supporting imagery. Many of the currently available systems
consist of muitiple, disjoint databases, whose information content must be manually interpreted and in-
tegrated by users. They require an excessive input of user/analyst time that should be spent on analysis
and interpretation of imagery intelligence data.

In order to attack the IIMS probiem, a more economic way of building such a complex system needed to
be identified. Key to such a deveiopment is the ability to reuse existing information management system
and software components. Thus, the IIMS IR&D project was initiated with the following objectives:

« analyze and produce a domain model for IIMS, generating a generic IMS architecture and
an application classification scheme into which reusabie components can be categorized.

» document the feasibility, procedural differences, and steps to be taken to incorporate a
component-based deveiopment into DOD lifecycle standards;

e investigate tools and techniques for identifying, retrieving, and incorporating components
(reusabie and commercial-off-the-sheif software) to develop IIMS;

e popuiate a software library with |IMS related components that can be used to prototype or
develop future systems; and

e develop an IIMS applicatior: prototype as a proof of concept application and to provide first
iteration feedback on the domain model and development methods developed in the first two
tasks.

The approach to investigation under the project inciudes five major tasks:
1. IIMS Domain Analysis;

2 Component-based Development Methodology:;

3. Software Reuse Tools and Techniques;

4. Establishing an lIMS Reuse Library; and

§. 1IMS Prototype Development.
A major assumption going into the IR&D project was that an in-depth examination of each task wouid be
sacrificed in order to gain as much experience as possible in each area. All of the tasks are currently in

various stages of completion, as described below. Each task was initiated based on resource and time
constraints rather than on a logical prograssion from one task to another.

IIMS DOMAIN ANALYSIS

The lIMS Domain Analysis task focused on the analysis of the IIMS application domain following a
methodology deveioped by James Gish, Geraid Jones, and Ruben Pristo-Diaz at GTE Laboratories in
Waltham, Massachusetts and documented in a technical report entitted “Domain Analysis: Procedural
Model Refinement and Experiment Proposal® by Mssrs. Gish and Prieto-Diaz [GISH88]. The purpose of
the domain analysis task was to identify the objects that make up an IIMS domain, classily them, and

100

14 April 1989

frame them in a structure that facilitates creation of system modeis of the IIMS domain. The suggested
use of the modets is to identity components and their relationships within an IIMS. Identified components
become candidates for reuse when building similar systems. The analysis proceeds from the charac-
teristics of a specific system to the development of general or generic models describing the generic
components and their interaction.

The Domain Analysis methodoiogy pursued deals with the identification of objects, functions, and relation-
ships common across the domain. The domain objects, functions, and relationships are used to define a
domain taxonomy and a domain model. The methodology invoives eight steps, seven of which were
performed under this task. The eighth step, involving the definition of a domain language, was not
attempted due to time and budget constraints. The seven steps pursued inciude:

1. Select Specific Functions/Objects;

2. Abstract Functions/Objects;

3. Define Taxonomy;

4. |dentify Common Features;

S. Identify Specific Relationships;

€. Abstract the Relationships; and

7. Derive a Functional Model.
The flow of thesa steps is shown in figure 1, from [GISH88].

Figure 1. Domain Analysis Transforms Requirements into a Taxonomy and
Modeis

101

14 April 1989

Before executing any of the above steps, the scope of the domain of the system(s) to be analyzed was
defined in order for the domain model 1o be both sufficiently general yet detailed enough to express
applications of broad scope within the domain. This domain definition provided a basis of understanding

before proceeding with the analysis steps.

After the domain was defined, the first step in domain analysis was to identify specific functions and
objects within the domain. Domain requirements were analyzed and lists of objects within the domain and
functions related to the objects were created. The objects and operations or functions were then
grouped, based on an abstraction of their common attributes, and formed into classes. The identification
and definition of these classes by grouping and classification constituted a taxonomy.

The first taxonomy derived was a hierarchical model. The taxonomy was then reorganized into facets
which are perspectives or points of view of a particular class. The faceted taxonomy offers more fiexibility
than a single hierarchy and provides a more comprehensive definition of the domain. Both a taxonomy of
functions and a taxonomy of objects were defined in this way.

After the preliminary taxonomies were generated, existing systems were examined to try to isolate their
commonalities. A list of common features was then generated. Specific relationships between objects
and functions were also extracted from existing systems. The relationships were then abstracted in order
to determine how relationship descriptions can be generalized within the framework of commeon features.
In the process, the specific reiationships were mapped onto the common features. The listing of common
features, specific relationships, abstract relationships, and the taxonomies were then used to derive a
funcional data flow model of the system.

As an added step to the methodoiogy, an Entity-Reiationship Model was deveioped to clarify the retation-
ship between objects or entities within the system and as another way to clarify the functions of the 1IMS

domain.

IIMS DOMAIN ANALYSIS CONCLUSIONS

Several conclusions about domain analysis and the methodology used were noted at the compietion of
the Domain Analysis task. The expectations going into the domain modeling phase of this project were
that the resulting model would provide a basis to deveiop an IIMS prototype and that the taxcnomy
resulting from the domain analysis could be used for deveioping the faceting scheme for a library of
reusabile software. The domain modeiing effort was only partially successful in reaching these goals. The
lack of success can be attributed to several factors, inciuding inexperience with the domain analysis
methodoiogy, and the planned approach not to do an in-depth domain analysis, but rather to push
through the methodology at a more superficial level in order to gauge its oversil effectiveness.

The methodoiogy proved to be effective in gaining an understanding of the domain of interest, namety
imagery information management systems, and resulted in initial modeis for developing the prototype.

102

14 April 1989

However, the functional model proved not to be the most effective or comprehensive mode! for the
prototype development task.

The tunctional model documented in the domain analysis phase proved to be sufficiently generic to other
types of information management systems. Having the imagery functionality in the modeis provided the
intertaces and place holders where other, nonimagery applications could be substituted for the imagery.
Although information management may be the broader (more generic) domain, narrowing the focus to
data specific (imagery, less generic) applications heiped define domain boundary points, and resuited in a
model that is useful (more generic!) to other types of information management systems.

The other major unexpected conciusion resulting from the IIMS domain analysis is that muitiple
taxonomies or ciassification schemes are necessary to support reuse at different levels of abstraction;
from the design of system architectures, through the construction of the system reusing specific software
components. The domain analysis methodology was effective in defining the system domain but did not
result in a taxonomy that was useful for classifying components to build the system. The methodology
pursued stopped short of defining guidelines for transforming the resulting generic system taxonomy into
a useful scheme for classification of specific pieces of software.

The domain analysis taxonomy appears to be most useful for the earfier deveicpment phases where
system requirements are analyzed for commonality with parts of the domain. The domain analysis
models and taxcnomy are useful for determining where or if there is commonality between systems.
However, trying to buiid the classification scheme for the fibrary of software components from the domain
analysis taxonomy would not work. The facets for classilying and using design level specifications are
sufficientty different from the facets used for software components to require different library taxonomies.
This was not obvious from the domain analysis methodoiogy or from the guidelines on building reusable
fibraries until these methods were attemnptad in practics.

The overall domain analysis methodoliogy worked well to describe common elements of imagery infor-
mation management systems and to point towards areas to investigate for reuse during actual design and
implementation. Two additional techniques are necessary: an approach for building phase-specific
(system architecture, system design, subsystem implementation) reuse libraries based on the domain
anaiysis; and a way of linking system and high-level design components classified during domain analysis
fo the actual software components that can be reusad to construct systems within a domain.

COMPONENT-BASED DEVELOPMENT METHODOLOGY
The basic premise of the component-based development methodology is that each unique system
deveiopment is really an instantiation of functionaiity from one or more appilication domains. (An applica-

tion domain is a class or family of systems that share common characteristics.) This commonality creates
the opportunity to identify reusable components.

103

14 April 1989

This task is intended to define in procedural terms the impact of the component-based development
methodology on the standard DOOD development methodology requirements. The current status of the
task is that an initial look at the overail deve!dpment methodology and how reuse refines the methodology
has been started.

SOFTWARE REUSE TOOLS AND TECHNIQUES

The approach o this task buiids on previous work that deveioped tools for software component cataloging
and retrieval. Beginning with the utilization of the Asset Librarian System (ALS) deveioped by GTE
Laboratories, this task will extend and compiete software librarian capabilities currently availabie. The
ALS tooi is in the process of being rehosted from its current PC-based environment using Oracle and a
proprietary windowing product 1o a SUN UNIX environment using SQL and the X Window System. A goal
of this task is to produce a portabie librarian toolkit with which customized reuse applications can be
developed.

ESTABLISHING AN IIMS REUSE LIBRARY

This task and the deveiopment of a prototype /IMS were intended to work together as an iterative
process. Under this task, software components have been identified and described in preparation for use
of the ALS. As a resuit of the conclusion reached in the Domain Analysis task that there is a need for a
separate classification scheme derived from the components as opposed to one derived from the domain,
this task began with the identified software components and guidlines on building an ALS library
[PRIET8S]. An initial classification scheme has been derived and the library is ready to be popuiated with
components.

IIMS PROTOTYPE DEVELOPMENT

The intent of this task was to apply the component-based deveiopment methodoiogy to a smali scaie
software development effort, using the components in the ALS library. The prototype designed represents
the man-machine interface for a typical imagery analyst whose job is to do ressarch using textuai reports,
images, and maps to produce some type of imagery report. The prototype is being developed in a SUN
environment using SQL and the X Window System. This task wound up preceding the methodolegy and
reuse library tasks. As a result, lessons leamed in developing the prototype for and with reuse will be
captured and used as input to these two tasks.

CONCLUSIONS

GTE NCSD has spent a good deal of effort addressing the problems of reuss in practice. We are applying
reuse 10 a practical problem and are committed to continuing the investigation of reuse in the future. We
are interested in sharing our experiences with other users in order 10 share our concems and lessons
leamed, and to acquire other users’ practical lessons leamed. We are very interested in attending the
Reuse In Practice Workshop and look forward to participating with other interested users.

104

14 April 1989

REFERENCES

|GISH88]

[PRIETSS]

James W. Gish and Ruben Prieto-Diaz. "Domain Analysis:
Procedural Model Refinement and Experiment Proposal®.
Technical Note No.:87-126.05, GTE Laboratories Inc.,

40 Syivan Rd., Waitham MA 02254, April 1988.

Ruben Prieto. “Building a Library for Reusable Software".

Technicat Report TR-016-12-88-126, GTE Laboratories inc.,
40 Syivan Rd., Waitham MA 02254, December 1988.

105

The Role of SADT
in Domain Analysis for Software Reuse

Position Paper

Ernesto Guerrieri
Theodore B. Ruegsegger
SofTech Inc., Waltham, Massachusetts 02154-1960

4 May, 1989

Recently. an internal group® at SofTech was reviewing Prieto-Diaz’s paper on Domain
Analysis PRIETO-DIAZ87b. It became evident that there was a similarity between the
proposed domain analysis process and the SADT? modeling process 'ROSS835. MARCAS8S .
In the past. SofTech had used SADT to perform a “domain analysis” RUEGSEGGERST .
In this paper. we would like to show the similarity that exists between the two processes and
that SADT can play a role in performing domain analysis.

Some of the key points that Prieto-Diaz states in [PRIETO-DIAZ87b; are:

o There is “no methodology or any kind of formalization™ for domain analysis. The

article provides data flow diagrams for a recommended process.
e Potentially reusable items are difficult to understand and to adapt.

o The use of domain analysis to “capture the essential functionality” will make the items

more likely to be reused.

!The Software Reusability Study Group meets on a regular basis to review and discuss topics on software
reuse.

?Structured Analvsis Design Technigue.

106

o The domain analysis process is similar to knowledge acquisition, modeling, and object

oriented programming.

e Domain analysis occurs prior to the Systems Analysis phase. 1t takes a more general

or abstract viewpoint.
¢ The domain analyst searches for common characteristics (i.e., objects and operations).

o A “domain specific lJanguage” is recommended (with special syntax and semantics).

Classification helps to develop one.
e A basic problem in domain analysis is defining a domain’s boundary.

SofTech performed for ISEC? an assessment of the potentials for software reuse in tra-
ditional MIS applications. One of the findings from this study RUEGSEGGERST, was

that:

“SADT is a useful method for the development, evaluation, presentation, and
documentation of generic functional architectures. The “viewpoint” principle of

SADT is an aid in making analogies among purportedly dissimilar systems.”

Neighbors defines a domain as “the encapsulation of a problem area™ and the domain
analyst as “the person who examines the needs and requirements of a collection of systems
which seem similar™ NEIGHBORS84,. As a consequence, we looked at SADT from a domain
analysis perspective FELDMANNS89: and concluded that:

1. The key intellectual challenge in both processes is in recognizing and making common-

ality practical.

2. SADT is usable for domain analysis, but it lacks the domain specific language. It was
noted that a domain specific language can be generated for an SADT model via FEO*
diagrams.

31U.S. Army. Information Svstem Engineering Command.
*FEO (For Expusition Only) diagrams are diagrams that contain anvthing needed bv an author to

illusirate a point associated with an SADT diagram.

107

3. The common module identification in SADT is the same search for commonality as is

performed in domain analysis. Py

4. SADT’s syntax for common modules are the “down (call) arrows” and the “interface

FEOs.”

5. SADT is not limited to one domain. It can model interfaces between domains.

The SADT modeling process piaces a heavy emphasis on interviewing (i.e., information
gathering). bounding the subject, determining the purpose and viewpoint of the model. and ®
generating the data and activity lists. These steps recognize the need for a rigorous procedure
due to the intellectual challenge in recognizing and forming commor.alities.

A domain specific language is needed to comunicate between the analyst and the domain
expert. SADT’s generic notation does not give that “look and feel” impression to domain
experts reviewing a model of their domain. This can be achieved in SADT via a glossary of
terminology and the FEO diagrams.

Experience has shown that the decomposition of one of the boxes in an SADT model
should stop when the box is very similar to another box in the same mode] MARCASS .
Two boxes are similar if they perform roughly the same function and have almost the same
number and types of inputs, controls, and outputs. This search for commonality is similar e
to the identification of common features in domain analysis.

The appropriateness of SADT for domain analysis was realized by Douglas Ross several

years ago ;ROSS85, when he stated: ®

“SADT is an e:;tremely powerful methodology for working out a clear-cut under-
standing of an at-first obscure and nebulous complex subject, documenting that
understanding, and then communicating that understanding to others. ...SADT
can provide the framework for a problem-solving methodology for any kind of

problem.”

108 °®

]

References

FELDMANNS9 SADT presentation at the Software Reusability Study Group by Clare
Feldmann, SofTech, Inc., Waltham, MA, April 18, 1989.

FREEMANS7? “A Conceptual Analysis of the Draco Approach to Constructing Software
Systems,” Freeman, P., IEEE Transactions on Software Engineering, Vol.SE-13.

No.7, pp.830-844, July 1987.

MARCAS88 “SADT Structured Analysis and Design Technique”, Marca, D.A., and
McGowan, C.L., McGraw-Hill Book Company. New York. New York, 1988

NEIGHBORS84 “The Draco Approach to Constructing Software from Reusable Compo-
nents,” Neighbors, J.M., IEEE Transactions on Software Engineering, \'ol.SE-10.
No.5, pp.564-574, September 1984.

PRIETO-DIAZ87a “Classifving Software for Reusability,” Prieto-Diaz, R.. and P. Free-
man, IEEE Software, Vol.4. No.l1. pp.6-16, January 1987.

PRIETO-DIAZ87b “Domain Analysis for Reusability,” Prieto-Diaz. R., Proceedings of
COMPSAC 87. Tokyo. Japan, October 1987, pp.nn-nn.

ROSS85 “Applications and extensions of SADT,” IEEE Computer Magazine. \ol.15.
No.4. pp.25-34. April 1985.

RUEGSEGGERS7 “RAPID: Reusable Ada Packages for Information System Develop-
ment,” Ruegsegger, T., Technology Strategies '87 Proceedings, January. 1987

109

POSITION PAPER
REUSE IN PRACTICE WORKSHOP

Features Analysis: An Approach to Domain Analysis'

Kyo C. Kang

Software Engineering Institute
Camegie Mellon University
Pittsburgh, PA 15213
NET: kck@sei.cmu.edu

Abstract

A domain analysis was performed at the Software Engineenng Institute as part of a reuse
experiment. The analysis was called features analysis because of its heavy emphasis on the
analysis of functional leatures. The goal of the analysis was to identify and represent a
generalized functional model from which software requirements can be derived and based on
which reusability of components can be evaluated and ciassification of components can be
mads. Some of the experniences from the analysis are: (1) the domain analysis provided
opportunities for experts to consolidate and organize their domain knowledge and for non-
experts (o learn about the domain, (2) analyzing the functional features was an effective way
0 determine the product commonality and the scope of the domain analysis, and (3) there is
no adequate mechanism for representing a domain mode! to support reuse through the
requirements analysis phase.

The purpose of the domain analysis was (0 investigate the concept and feasibility, and
there was no Yormal” approach that was followed. A conceptual modeling method which is
based on the analysis of the “universe of discourse” is proposed in this paper as a domain

analysis method.

1. Introduction

The Appiication of Reusable Software
Components (ARSC) project at the Software
Engineering Institute (SEI!) performed a features
analysis as part of a reuse experiment [ARSCS89).
The features analysis [PERRY88)] is a type of
domain analysis, in which features (e.g., functions,
objects) of similar systems in the same domain are
analyzed. Becauss of its heavy emphasis on the
analysis of features, the domain analysis was
cafled a features analysis in this project. The goal
of the features analysis was © identify and
represent a generalized functional feature model

of a family of systems with parameterization to
accommodate the differences. The analysis was
performed 10 provide a basis for the requirements
anglysis, evaluation of the reusability of
components, and classification of reusable
resources.

The features analysis was performed by two
domain experts and two non-experts based on
their domain knowiedge and using the documents
from the Common Ada Missile Packages (CAMP)
project [MCDONBSa] and the Program
Performance Specification (PPS) [MCDONBSSD] of

"The Software Enginesring instass is a federally funded research and development center spaneared by the Department of
Delense under contract 19 Camegie Mellon University. This paper is apgroved for public release.

110

the target system. The domain expers took the
top-down approach and defined a high-level
functional feature model based mostly on their
domain knowiedge. The non-experts took the
bottom-up approach depending heavily on the
CAMP documents and consultation with the
experts. They identified the functional features
implemented by the CAMP components and
consulted with the experts to verily that me
features covered general problems.

The analysis results were represented using the
activity charts of Statemate [ILOGI87], which was
adopted as the requirements analysis ool in this
project. A sample activity chart is included in
Exhibit 1.

Some of the lessons leamned from the analysis
are discussed in section 2. Our perspective on
domain analysis is described in section 3,
followed, in section 4, by an outfine of a
methodoiogy proposad for domain analysis.

-

2. Lessons Learned

The features analysis was performed 10
investigate the concept and the feasbility, and it
was never intended to generate a complete
domain model. However, we leamed a few
lessons which are summarized in this section.

One of the problems encountered at the
beginning of the analysis was to determine the
scope of the domain. One domain expert was
knowledgeable in cruise missies whereas the
other expert was knowledgeable in air-to-air
missiles, and they often used the same
terminology for different meanings. As they
resoived the dilferences, &t was realized that,
athough both types of systems share some
common features at the high level, there were not
enough commonaiities that coukd be adequatety
represented by one functional features model.
Guidance and navigation methods, which are
major features of missile sysiems, were different
and they had 1o modily their definitions %

reconcile and come up with a single model. We
believe that determining the scope of the domain
is a necessary first step of the analysis, and that
analyzing the features of products is an effective
way 10 determine the scope.

Experts with different backgrounds often used
different tarms for the same thing or the same
terms with different meaning. For example, the
term “navigation® had a different meaning to the
air-lo-air missile expert than to the cruise missile
expert. To avoid possible misinterpretation of a
domain model, we believe that a dictionary which
inciudes the definitions of the keywords used in
the model and description of the mocel shouid be

produced during the domain analysis.

As stated previously, we used the Statemate
activity charts as the domain model representation
mechanism. The rationale behind the choice is
that we aiready chose to use Statemate for the
requirements analysis and we wanted {0 derive
the requirements specification from the features
model by selecting the features that are
appropriate for the target system. Although, we
did not have any problem describing the features
and their static structure, &t was very difficult to
represent logical relationships between the
features using Statemate. We wanted to specify
the constraints and composition rules among the
features (o.g., the feature A must be, or must not
be, selected when the feature B is selected). Also,
we wanted to specify # a feature is optional or
mandatory. (We understand that Statemate was
not designed to represent the kind of information
we wanted 10 express.) We befieve that this a
general shortcoming of most of the CASE toois
available today to support the domain analysis. In
order 10 have reuse occur at the requirements
level, we need a mechanism that can adequately
represent the general functionafity of software
systems from which speciiications of a specific
software system can be generated. '

Atthough, we could not produce the
requirements specification directly from the

111

domain model, the knowiedge gained during the
features analysis greatly helped us to do the
requirements analysis. The developers couid
acquire enough domain and reusable components
knowledge to define the requirements. Based on
our experience we believe that the domain
analysis or reexamination of the domain model
should be a standard phase in the software life-
cycle.

Our perspective on domain analysis is
described in the following section.

3. Perspective on Domain Analysis

Our perspective on domain analysis is
descrived in this section by answering two
Questions: what &8 domain analysis? and why do
we need to do it?

What is domain analysis?

Domain analysis is a phase in the software life-
Cycle where a2 domain model, which describes the
common functions, data and relationships of a
family of systems in the domain, a dictionary,
which defines the temminologies used in the
domain, and a software architecturs, which
describes the packaging, control, and interfaces,
are produced. The inforrnation necessary ‘o
produce a domain model, a dictionary, and an
archilecture is gathered, organized, and
represented during the domain analysis.

Domain analysis is related 1o requirements
analysis but # is performed in a much broader
scope and generates different results. It
encompasses a famiy of systems in a domain,
produces a domain model with parameterization to
accommodate the differences, and defines a
standard architecture based on which software
components can be developed and integrated. A
domain model and an associated dictionary
represent the domain knowledge, and an
architeclure represents the framework for
deveioping reusable components and for
synthesizing systems from the resuable

components. An ideal domain model and
architecture would be applicable throughout the
ilecycle from requirements analysis through
maintenance.

Why do we need to do domain analysis?

As the areas 1o which computers are applied
become larger, one of the problems faced by the
industry is that it is often ditficult to find software
engineers who have the required application
domain knowiedge. Reuse of application domain
knowledge is becoming an important issue in
software engineering. The purpose of domain
analysis is 1o gather and represent application
domain knowledge in a model and to develop an
architecture that shows how the probiems in a
domain are addressed in software systems. A
domain modei unifies and consolidates the domain
knowledge which may be reused in subsequent
developments.

More and more organizations consider software
as an asset that can provide an important edge in
business competition. Therefore, identifying areas
that will maximize the retum on software
investment is an activity that encompasses both
business planning and software engineering. The
business planning activity identifies future
products, and the domain analysis activity
identifies the product commonality and potential
software assets. The information on the software
assets can be fed back to future business
planning. Also, the product commonality
information enables large-grain reuse across the
products.

The productivity and quafity improvement from
reusing components built for the purpose of reuse
is much grester than that from components
deveioped without reuse in mind. However, in
order to build reusable components, the contexts
in which the reusable components will be used
must be undersiood and the reusable components
must be designed to accommodate the contextual
differences. A domain model and an architecture

112

define the contexts for developing reusabie
components.

In summary, the output from the domain
analysis can be used to:

e define the context in which reusable
components can be designed and
developed,

s ascertain reusability of candidate
components,

« identily and develop software assets,

eprovide a model for managing
(classifying, storing, and retrieving)
the software assets, and

e provide a framework for tooling and
systems synthesis.

As noted previously, the purpose of the features
analysis in this project was to investigate the
concept and feasiility, and there was no formal
approach followed by the project. A repeatable
method is needed o evaluate and improve the
domain analysis process. In the following saction,
a conceptual modeling technique is proposed as a
domain analysis method.

4. An Approach

A number of systems modeling techniques have
been deveioped and used in the database area
[BRODI84]. Ot those techniques, a conceptuat
modefing technique is summarized from (NWSS76)
and [SCHIE79] and proposed as a domain
analysis method in this section.

Construction of a system starts by perceiving a
conceptual model which may be derived from
existing “reality” [NLISS76] or from a hypothetical
system. Reafiy is defined 10 be a system (or
systems) in existence and consists of entities and
reiationships between the entities [CHEN76]. An
ertity is either a physical entity or a concept.
Manmnpemor.andsyuomb
perceived and then described by “naming™:
entities, properties, and relationships which are
perceived for a system are named. An entity is

characterized by its properties, and some of these
properties (for example, name) may be used as
identifiers. The end result of naming is called a
“perceived reality.”

The perceived reality may contain names which
are not of concem for the target system. Those
unnecessary names are efiminated and what is left
is the “universe of discourse.” The universe of
discourse is an objective system for which the
description will be made, and within which
dialogue between the system developers will be
fimited.

The entities in the universe of discourse are
classified into homogeneous sets (classes or
types) of entities; homogeneous in the sense that
all entities in the same class have some properties
in common. Each entity classified as such is
named as an entity {ype, which is a unit in
conceptual model construction. Relationships
existing between the entities are also dassified
into relationship types, and these types are
defined between the entity types. Properties of the
entities in a class are classified into property
types, and for each property type, possible values
are defined. A conceptual model contains the
description of the abstracted universe of
discourse. The process is summarized in Figure 1

below.
Reality
(Systems)
|
=

v
Perceived Raality

i .
{ selection

Pigure 1

113

A conceptual model consists of abstract
elements of a system (or systems), such as entity,

attribute, and relationship types, and rules and

constraints between the elements. The entity-
relationship model [CHEN76] or semantic data
modeling techniques [MCLEO78] may be used as
a conceptual model schema language. It is
demonstrated in {KANG82] that an extended
entity-relationship model can be used as a meta
language to define systems specification
languages.

5. Summary
Domain analysis is an activity to produce a
domain model, a dictionary of terminologies used
in a domain, and a software architecture for a
family of systems. These outputs from the domain
analysis:
« facilitate reuse of domain knowledge
in systems development,
« define the context in which reusable
components can be deveioped and

the reysabilty of candidate
components can be ascertained,

eprovide a mode!l for classitying,
storing, and retrieving software
components,

e provide a framework for tooling and
systems synthesis from the reusable

components,

e aflow large-grain reuse across
products, and

ecan be used to identily software
assets.

Based on our experience with a domain
analysis (called features analysis in this project)
and the potential benefits from it, we believe that
domain analysis should be a standard activity in
the software deveiopment lile-cycle.

[ARSC89] ARSC, An Experiment to Analyze a
Reuse-Based Software Development: Detailed

Dcs:gn Software Engineering Institute (technical
report in preparation), April, 1989.

[BRODI84] Brodie, M.L., Mylopoulos, J., Schmidt,
J.W,, editors, On Conceptual Modelling, Springer-
Veriag New York Inc., 1984.

{CHEN76] Chen, P.P., "The Entity-Relationship
Model - Toward a Unified View of Data®, ACM
Transactions on Database Systems, vol. 1, no. 1,
p-9-36, March 1976.

(LOGI87] ilogix Inc., STATEMATE: The
Language of Statemate, i-Logix Inc., Burlington,
MA,, March 1987.

(KANG82] Kang, K.C., An Approach for
Supporting System Development Methodologies
for Developing a Complete and Consistent System
Specification, Ph.D. Dissertation, The University of
Michigan, Ann Arbor, ML., 1982.

[MCDONB8S5a] McDonnell Douglas Astronautics
Co., Common Ada Missile Packages (CAMP):
Overview and Commonality Study Results,
McDonnel! Douglas Astronautics Co., 198S.

[MCDONBSSb] McDonnell Douglas Astronautics
Co., Computer Program Performance
Specification Cruise Missile Land Attack Guidance
System BGM-109C, McDonnell Douglas
Astronautics Co., 1985.

(MCLEO78] McLeod, D., A Semantic Data Base
Model and Its Associated Structured User
interface, Ph.D. Dissertation, MIT, Cambridge,
MA., 1978. :

[NWISS76] Nijssen, G.M., “A Gross Architecture for
the Next Generation Database Management
Systems®, Modefling in Database Management
Systems, North-Holtand Pub. Co., p.1-24, 1976.

(PERRYSS] Penty, J., Perspective on Software
Reuse, Software Engineering Institute (CMW/SEI-
TR-88-022), November, 1988.

114

[SCHIE79] Schiemann, A., “A New Approach to
the Entity-Relationship Model”, Proceedings of the
intemational Conference on Entity-Relationship
Approach to Systems Analysis and Design,
p.383-408, December 10-12, 1979.

115

;
[

«ISS10n_LonTRN.

CRA_CORAECTIoN

LATERAL SVIOANCE

TERR _AMmprven

A Sample Functional Feature Model
Exhibic 1,

116

Application of Domain-Specific Software Architectures to
Aircraft Flight Simulators and Training Devices

Kenneth J. Lee
Software Engineering Institute

1. Introduction

Work on domain-specific software architectures
(DSSA) has been on-Qoing at the Software Engineer-
ing Institute (SEI) in Pittsburgh, Pennsyivania, since
1986." The primary goal of this project is to encour-
age the creation and use of canonical design specifi-
cations for typical, recurring probiems in an applica-
tion domain. A canohical design specification con-
tains templates for software that ratifies a specific in-
stance of a recurring problem. We are interested in
canonical design specifications that embody princi-
ples of object-orientation. The project will be success-
fulif it does nothing more than directly and indi-

rectly generate examples of domain-specific specifi-
cations to object-oriented designs.

Aircraft flight simulators and training devices have
been the primary application domain for our work.

This paper describes a specification for a typicai prob-

lem in the domain and discusses the benetits of both
the particular specification and the use of canonical
specilications in general.

1.1 Background

The effort in the domain began with our participationin
the Ada Simulator Validation Program (ASVP), a re-
search and development eftort by two aerospace con-
tractors to redesign and reimplement subsets of two
existing flight simulators in Ada. The SEI projectteam
supported the Air Force System Program Office? by
attending reviews and acting as technical consultants.
As part of our involvement, we deveioped a software
architecture for flight simulator systems®. The soft-
ware architecture has received acceptance in the
domain and is being used by contractors invoived in
full-scale deveiopment efforts. Section 3 describes
the resuits of this work in more detail.

! This work is sponsored by the (U.S. Departnent of Delense.

Michael Rissman
Software Engineering Institute

1.2 Reader's Guide

This paper is too brief to be able to cover all aspects
of our work in the domain. The SE! technical report,
An OOD Paradigm for Flight Simulators, 2nd Edi-
tion, describes our work with a DSSA in the flight
simulator domain; see [2]. The SEI technical report,
An OOD Solution Example: A Flight Simulator Electn-
cal System, describes the implementation of a typical
simulator system using the OOD paradigm; see [1].
The concept of a DSSA is introduced in Section 2,
which also discusses the approach used to deveiop
the specification and some benefits of the approach.

Section 3 presents a view of the flight simulator do-
main and describes a typical problem and its specifi-
cation. The section conciudes with a discussion of
some advantages of using DSSA.

Section 4 briefly describes the future direction the
DSSA project will take.

2. Domain-Specific Software Architec-
tures: Definition of Terms

This approach to building large software systems in-
volves breaking the problem up into many smaller, re-
curring problems. Recurring problems are problems
that occur more than once. One identitying character-
istic of a recurring problem is that the problem occurs
in several places within a system, often on different
processors. Iinthe flight simulator domain, a recurring
probiem is the description of aircraft systems in terms
of objects, connections, and control mechanisms.
The systemns may be part of one executive running on
a single processor or several executives on several
processors. Another aspect of recurring problems is
that they tend to be those parts of the system that act
on many different instances of the same kind of data.

For example, a simulator electrical system may have
several hundred circuit breakers. A specification to a

1SPO for Training Systems (ASO/YW) at Wright-Patiersan Air Foroe Base.

'msMisWththmﬂMMme Simdators, Edk
Son (2] and An OOD Soluson Example: A Fligin Sinviator Elsctrical Syswem (1]. for Fognt 2nd

March 1989

117

recurring problem addresses all aspects of the prob-
lem from all occurrences of the problem in the system.
Implementations of a canonical specification {0 a re-
curring problem are then similar in structure, behav-
lor, and functionality.

A domain-specific software architecture is a set of
specifications to recurring problems that characterize
a domain. The specifications are represented
diagrammatically. The diagrams are constructed us-
ing icons that represent domain-specific functional
idioms and forms.

The specialized functional idioms represent classes
of things from which design specifications can be
formed. The things can be entities (for example, ob-
Jects), connections between entities, or abstractions
for grouping and updating related entities (for exam-
ple, systems and executives). A functional idiom is
the basis of functionality in the diagram. Functional
idioms abstract the functionality of the design (see
Figure 1). Rules of composition are associated with
each idiom. For example, the rules for a connection
are:
¢ A connection touches two objects, one at the
head of the connection and the other at the
tail of the connection.
+ The label on a connection can list the ele-
ments of a composite.
¢ Connections may pass through a system
symbol, but originate and terminate only at
objects.
Forms are code templates satistying the functionality
of afunctional idiom. The forms abstract the func-
tionality of the implementation. A file containing a
form will contain an Ada package specification, a
package body, and a test procedure. The file con-
tains placehoiders for the name of the form, the Ada
types used in the form, and so on. The placehoiders
must be giobally replaced with appropriate values us-
ing an editor. Globai replacement of the placehoiders
sffects the specification, the body, and the test pro-
cadure. The resulting file is a compilable unitthat can
be tested (after compitation and linking) with the asso-

ciated test procedure. Also, forms allow for automa-
tion. Given a diagram and a diagram parser, auto-
matic generation of software code would be feasible
using the forms.*

When a design specification is created with icons
representing functional idioms and forms are as-
signed to each functional idiom, we say that the de-
sign specification is a metaphor for the software
system. Once a designer, an implementor, or a main-
tainer has leamed the functional idioms and the
forms, the design specification provides a detailed
description of the system. In other engineering disci-
plines such a diagram, for example, a blueprint in
architecture, is accepted as the design of the entity
ik represents. Practitioners can use the diagram and
understand where awall is to go, how high it will be,
and how it will be constructed. We assert that this kind
of diagram serves the same role for software systems.

The development approach using DSSA involves the
following steps:

+ identify the recurring problem(s), .g., aircraft
simulator systems.

+ Solve each recurring problem for a single in-
stance of the problem, e.g., for an engine sys-
tem.

¢ Review and validate the design using the de-

- sign specification.

¢ Generalize each specification 10 produce
forms.

¢ Verity the forms with respect to the design
specification.

¢ Generate the rest of the instances of the
specilications using the forms.

This is a depth-first approach. The approach provides
several benefits:

+ Design decisions are made once and applied
0 all instances of the specification.

+ Multiple instances of the design, which wouid
be aubject to maintenance and enhance-
ment, are not created before the design is
validated.

¢ We are not aware of a 10l that couid perse these diagrams. We do not have the esources © build such a tool.
mwumummummnm.m.

March 1989
118

icon functional idiom functionality

tectangle object maps inputs 1o outputs ...

arrow connection moves effects between objects ...

round-cormered system groups related cbjects, provides update

rectangle abstraction for the set of objects

gray-filled area executive groups systems; provides ordered
update for the systems

Figure 1: Classes of Functional Idioms

+ Documentation can be produced in a similar
manner, i.e., instances of documentation can
be produced for the initial instances and vali-
dated. Then as new specification instances
are created from.the forms, new instances of
the documentation can be created from docu-
mentation forms.

¢ The amount of documentation produced will
be less. The generalized specification can be
described once. Eachinstance only needsto
describe the qualities that make it unique.
Pointers back to the description of the general
specification suffice for all other qualities.

3. A DSSA in the Fiight Simulator Domain

Our invoivement with flight simuiators began with
the ASVP. The concepts embodied inthe DSSA, de-
veloped during the program by the SEI team, were
accapted by the contractors and endorsed by the
Program Office. Subsequent work with contractors
doing fuil-scale developments of simulators has ma-
tured the DSSA.

3.1 Domain View

A natural analogy exists between a flight simuiator
and the real worid. A real-worid aircraftis built of sys-
tems, and the systems are built fromparts.® These
parts can be croated explicitly in software. Thus, there
can be a direct cofrespondence between the real-
worki entities and software entities. A specification
that takes advantage of an objective view of a sys-

temm must also address those entities that are
needed o run the simulator on a computer, e.g., con-
nections for moving data, and executives for manag-
ing time.
The identification of an aircraft system as a recur-
ring problem falls directly out of a cursory view of the
domain. There are several systems in a simulator,
e.g., an electrical system, a fuel system, a hydraulic
system, an engine system. Each system is periodi-
cally updated. Al the time of the update, the system
must have access to the state of the world outside
the system. Whenthe systemupdate is compiete, the
workd must have access to the state of the system.
Thus, a general specification for aircraft systems
that addresses objects, connections, and update trig-
gers shoukd be applicabie across simuiator systems.
Tha T seciinn destrhes A ecicinn v te w-
curring problem. See 1) and}2) forimplementations
of the specification.®
3.2 A Domain-Specific Software Architecturs for
Flight Simulators
This section describes an instance of a specification
0 a recurring problem for flight simulators. The re-
curring problem is the description of aircraft systems
in terms of objects, connactions, and control mecha-
nisms. The specification defines a DSSA for this do-
main.

This specification is for an aircraft simulator engine
system. But this is an instance of a specificationto a
recurring problem; thus, the characteristics of the

S For exampie, an engine systam is made up of bumaers, fans, arbines, and so on.

S Caher considerations that must be kept in mind include:
+ real-time performance
¢ impact of compilation dependencies
¢ post-depioyment software support

7 Systamg outsice the figit executive, ¢.¢., the instrumentation

, 810 assumaed 15 be part of other

sysom
exscutves perhaps running on other processors. See the Paradigm report (2] for more information.

March 1989

119

specification, inciuding the diagram and the discus-
sion, apply equally to the other systems in a simuiator.

Diffuser Fan Duct

4?%?!_ -

Rotort
(Bleed valve — not shown)

Burner

Engine Casing

..m_
:’:~ " ’ Exhaust
Lr-———‘u il

Rotor2

Figure 2: Turbofan Engine Cross-Section

Theobjects inthe engine system are the diffuser, rotor
1, rotor 2, burner, fan duct, exhaust, engine casing,
and bleed valve. System-level connections are
ghown, e.¢., aconnection moves discharge air pres-
sure, discharge airtemperature, and discharge air
flow from the diffuser to the engine casing. Executive-
level connections between objects in the engine sys-
tem and objects in other systems are aiso shown,
€.Q.. a connection moves a fuel flow value from an ob-
ject in the fuel system to the burmner object in the en-

gine system.’

Figure 2 shows a turbofan engine in cross-section.
The parts of the engine are labeled and the fiow of air
through the engine is shown. Figure 3 shows an en-
gine system design specification that corresponds
to Figure 2. Figure 3 is built using the icons discussed
in Section 2.

The icons are put together according to the rules of
composition associated with each idiom (see [2] for
more information). There is a name correspondence
between the iabeled parts in Figure 2 and the labeled
objects in Figure 3. There is also a functional corre-
spondences. Air flows into the diffuser from the envi-
ronment and passes through the engine casing.

The engine casing aflows the air o flow through the
engine, interacting with each object intum. Some en-

ergy is removed from the air by the fan duct and the
turbine blades of the rotors. Energy is added to the
air by the rotor fan blades and the burner (combustion
chamber). Thrust, which drives the airframe, comes
out through the fan duct and through the engine cas-
ing as exhaust. The name correspondence provides
a basis for traceability.

The engine system design specification, Figure
3, depicts one system on the aircraft. Each systemwill
have a similar specification that shows its connections
1 the outside world and the connections between
its objects. The separation of connections from ob-
jects allows systems and objects to be independent.
independence permiis separate development of
systems and objects, defines natural divisions for as-
sighing systems to processors, localizes details to ai-
low for easier modifications, and aflows replacement
of systems and objects in toto.

The executive encompasses systems and manages
time for the systems. Time is managed with a cyclic
executive. The use of a cyciic executive, traditional in
flight simuiators, is a visble mechanism for simulat-
ing concurrency. An implementation, using this
DSSA, allows for localization of scheduling informa-
tion, which may ease load balancing (see [2] for fur-
ther discussion).

March 1989

120

Flight Executive

S R

Figure 3: Turbofan Engine Design Specification

3.3 Advantages of a DSSA for Flight Simulators
Our expectations that DSSA and design examples
would transition well and be reusable are becoming
reality. The concepts have been accepted by the flight
simulator community. Program Offices believe that
requiringa DSSA earty inthe acquisition processis a
reasonable and necessary factor in assuring the suc-
cess of future programs. Contractors in the domain
that were unaware of the benefits of DSSA, having
created and used a DSSA for several months, now es-
pouse the use of DSSA. The evolution of the basic
ideas by the contractors will aid in maturing the tech-
nology.
Some comments from contractors working on full-
scale developments:?®
¢ A DSSA provides a common language. Engi-
neers are able 1o discuss the design in terms
ot the idioms in the DSSA. The lead design-
ors are then able to solve the recurring
problems, generating canonical specifica-
tions that, in this case, update systems of
objects and propagate the results of the up-
date. A paradigm that separates objects,

connections, and the scheduling of updates
seems effective. Since specifications using a
DSSA are developed by the lead designers,
the efforts of the lead designers are highly
leveraged. The recurring problems are
solved once and for all by the most talented
people.

¢ Alean set of concepts is supported. The com-
plexity of the DSSA is minimized. This al-
lows for a more general specification applica-
ble across simulator systems, i.e., the struc-
ture of the product is consistent and under-
standable. Consistency and understan-
dability ailow for efficient indoctrination of
newcomers, education of maintainers, and
confirmation of design decisions with users
and program offices. Also, a Quality assur-
ance organization can be involved to assure
that each system conforms to-the DSSA.
Thus, integrity of the product is assured.

¢ Design reviews now address design. Re-
viewers are able to discuss alternatives inthe
context of the DSSA. When the job is to pro-

¢ The comments stem irom the use of 8 specific madal for solving a specific problem and from the use of modeils in
genersi. No atiempt was made, however, 1 categorize the comments alorg these lines.

March 1989

121

duce an instance of a general specification,
which is optimal for the systembeing speci-
fied, reviewers can explore attematives.
Without constraints there are too many after-
natives to explore. Tradeoffs are addressed
at the right time and at the right level.

¢ Reuse is lkely to improve using a DSSA.
Reuse of design decisions is obvious. Less
obwvious is the observation that the software
produced is more lkely 1o be reusable in
other systems using the same DSSA. The
consistent structure of the specification en-
hances reuse of the software.

¢ The software shouid be easier to maintain.
First, each system will be implemented simi-
larly because the functional idioms are
based onforms. Second, the separation of
objects and connections isolates each sys-
tem of objects. Thus, replacement or addi-
tion of systems affects only one end of a set
of connections. The systems of objects at the
other end of the connection do not need to
change. Finally, aspects of a system, for ex-
ample, an engine system, are simuiated in
identifiable localities; enhancements and
simulations of maltfunctions map to corre-
sponding software entities.

4. Next Steps

Our intention is to discover and cultivate the notions
of recurring specifications and DSSA. The hope is
that the concepts will whet the appetites of others who
will carry our ideas in other directions. Qur aimthenis
to disseminate information about DSSA and accom-
modate the use of that information. So far, we have
been able to do so0 in the context of the simulator
domain, and we have begun to apply the technology
to the command, control, communication, and intelli-
gence (C*) domain (see [3] for more information) and
the embedded systems domain. We invite participa-
tion from those engaged in thess and other domains.

Our work continues on several fronts:

& We are working with real-world program de-
sign teams to polish the descriptions of re-
curring problems, which constitute the buk of
a system.

o We are monitoring the use of DSSA on fuil-
scale simulator developments {o heip mature
the technology.

¢ We are producing a transition plan that ad-
dresses our interests in pursuing other simu-
lation areas and other domains.

Our work on domain-specific software architectures
has addressed the requirements of programs in the
flight simuiator domain. The DSSA approach involv-
ing recurring problems is a common-sense view of
large software systems. The creation of canonical
design specifications to recurring problems has pro-
vided practitioners with domain-specific examples.
Such exampies provide a focus for education, dis-
cussion, and evolution of the concepts of a DSSA.

Acknowiedgments. This paper is based on work per-
formed by the Domain-Specific Software Architecture
Project at the Software Engineering Institute over the
past two and a half years. The project members are
Rich D'lppolito, Ken Lee, Chuck Plinta, Mike
Rissman, and Jeff Stewart.

References

{1] Lee, K.J., Rissman, M.S. An OOD Solution Exam-
ple: A Flight Simulator Electrical System. Techni-
cal Report, CMU/SEI-89-TR-5, Software Engi-
neering institute, Pittsburgh, PA, 1989.

[2] Lee, K.J., Rissman, M.S., D'lppolito, R., Plinta, C.,
Van Scoy. R. An OOD Paradigm for Flight Simuia-
tors, 2nd Edition. Technical Report, CMU/
SEI-88-TR-30, Software Engineering Institute,
Pittsburgh, PA, 1988.

[3] Plinta, C., Lee, K.J., Rissman, M.S. A Mode/ Solu-
tion for C%! Message Translation and Validation.
Technical Report, CMU/SEI-89-TR-12, Software
Engineering Institute, Pittsburgh, PA, 1989.

For more information contact:
Kenneth J. Lee
Software Engineering institute
Camegie Melion University
Pittsburgh, PA 15213-3890
Phone: 412-268-7702
ARPANET: ki@sei.cmu.edu

122

March 1989

The Role of Domain Independence in Promoting Software Reuse

Architectural Analysis of Systems

J.M.Perry, GTE Government Systems Corporation
M.Shaw, Camegie Melion University

Introduction

Domain analysis for reuse is a topic of much current interest and study. While there are several
variations of domain analysis, they are usually characterized by their emphasis on application
dependencies. This position paper describes architectural analysis which is a type of analysis for
furthering our understanding of software architectures. It attempts to raise the abstraction level of design
elements and, thereby, emphasizes domain independence. Although architectural analysis and domain
analysis for reuse have ditferent processes and goals, they are closely related and support one another.
This mutual support is identified and examined. The SE! Software Architecture Project is described to
provide an exampie of architectural analysis.

Domain Analysis for Reuse

Domain analysis is a discipiine which is evolving and can be undertaken for different purposes. In the
context of software reuse, several variations of domain analysis can be discemed. One type of domain
analysis examines software systems in a well defined application area to identify operations, objects, and
structures wnich are common to those systems. The common entities become candidates for
construction as reusable software parts. The emphasis in this form ot domain analysis is on application
dependent parts for use in constructing software systems. A Qgood exampie of this type of analysis is
provided by [CAMPBS]. Another type of domain analysis examines system requirements for a product to
identify operational features which can characterize a product family (of systems). The emphasis in this
form of analysis is on application behavioral characteristics for use in deriving system members of the
product family. This type of analysis, features analysis, is discussed In [Perry88]. [Gish and Prieto-
Diaz88lpropose a general definition of domain analysis as the isolation, characterization, and abstraction
for the purpose ot creating domain taxonomies, models, and languages.

While these variations of domain analysis differ in their focus of attention or purpose, each attempts to
understand an application area, or a family of application systems, by identitying domain specific
characteristics which will lead 10 increased levels of software reuse for that application domain. There is
mimummnmmomawmmmummmamwm
mmmmthmmdommmmmﬂm:wmwmmmamww
mm.mmmumwummmwmmmmlmmmmmdmm.
w«.mom.mmdmmmmwm.mmlwm
wm.m.m,wpmnmm.mmmwm.am
inertial measurement.

123

Domain Dependence and Domain independence: Considerations for Reuse

While this focus on domain dependency is justified, it should be balanced with an appreciation for and
understanding of the role of domain independence in moving software reuse from an ad hoc to systematic
practice. The boundary between domain dependence and domain independence is subtle, often
changing, and is one of degree. What often begins as a domain dependent artifact, through the right
abstraction, can become applicable to another domain and, thereby, take on a degree of domain
independencs. For example, GTE Communication Systems Division evoived reusable telephone
switching software{Roder78] and successfully applied the design of this software to other application
domains, including flight controlier trainers, C3 systems, and software engineering development
envionments. Another example of evolution from domain dependence to domain independence is
provided by the message generation software{Lee, Plinta, Rissman89] developed by the Domain Specific
Architectures Project at the SEl. This software originated within a C3 application to address the
proiiferation of message formats. The resulting software is reusable for other application domains, for
generating, converting, and validating types of structures. Successful abstractions often begin as domain
dependent concepts, which survive from ad hoc solttions to folklore practice, and through the
suppression of some detail (while retaining the 'right’ detail), become useful abstractions for systematic
practice and eventual codification for application across several domains.

Study of descriptions of software systems indicates that some of the ‘ight’ abstractions for supporting
software reuse are design abstractions, pertaining to software architecture. The definition and
formalization of these abstractions will not only promote the current practice of software reuse, but enable
new kinds of reuse, at the architectural level. Domain analysis for reuse which focuses on domain
dependent characteristics should be balanced by analysis which focuses on domain independent
architectural abstractions.

Design Level Abstractions Enable Software Reuse

Abstractions enable programmers to handle program complexity. Higher level languages, abstract data
types, procedures, and modules heip programmers build ‘better programs. As the use of design
abstractions, such as these, become widespread, canonical and specific instances are collected into
ibraries for reuse, and tools are developed to support their utilization in practice. Today, software

problems involve system complexity and design abstractions for the system level are needed to help
soive them, _

ThoabstractionbvelotdesigndatemmmetypoammemdwﬂwmnusewMBpossbleand
practical to achieve. Program statement abstraction raised the level at which reuss could be addressed
from the machine statement level to the programming language construct level; and procedural and data
Mnmmmammmmmmmwmwmammm
level. Advancement to the next design level not only will enabie reuse at a new higher level, but will lead
o routine and systematic reuse at the prior levels.

124

Architectural Analysis for Higher Design Level Abstractions

The next advance will be to the system organization level and requires the identification of common
architectural constructs and rules for their imegraiion. Application domain analysis can support this
advance i & has the goal of identifying important architectural elements in application system
architectures and if the analysis does not rule out domain independent abstractions. This type of analysis
is referred to, here, as architectural analysis. Analysis of these architectural elements and the ways in
which they are combined can lead to good architectural abstractions for system organization. These
abstractions can be used to specify architectural constructs, both domain dependent and domain
independent ones, as well. If this can be achieved, software reuse based on these new constructs will be
possible, thus, enabiing more codification and systematic practice of reuse.

Architectural Analysis for Understanding System Organization and Reuse
Several basic approaches to software reuse include:

« identification of reusabie components for development of a system;

« modification of a generic, base system to develop a new product;

» specification and invocation of the appropriate combination of primitives to elicit desired
systeam behavior.

These three forms of software reuse are related, but differ with respect to emphasis on implementation-
time or design-time; on lower or higher level of component; on parts or integrating framework.

The type of domain analysis for reuse should be determined by an explicit awareness of the chosen
approach to reuse. For example, domain analysis for common parts is appropriate for 1); features
analysis, for 2); domain analysis for a taxonomy [Prieto-Diaz86] was done for classification of work
products in the context of 1). 1) is a constructive approach and 2) is a derivation approach. 3) is a
generative approach and requires a deeper understanding of system organization.

Architectural analysis c>n support reuse, inciuding generative reuse, by focusing attention on higher
design leveis and system frameworks. It will increase our understanding of the composition of systems
and the relationship of system organization to system behavior.

System organizations are constructed from subsystems and composition mechanisms. The issues of
system construction are: the nature of the subsystems, function of the subsystems, intemal structure of
the subsystems, the composition or integration mechanisms, and subystem operation and behavior.
Each of these may be dependent on the implementation of a specific system, a family of closely related
systems, or 10 many systems. Identifying and classifying the system functions that are common to a
domain is a start in addressing these issues. Architectural analysis then extends this identification and
classification across domains in order to further resoive these architectural issues. The ultimate objective
of reuss is construction of Detter’ systems more productively. Understanding these architectural issues
will provide the foundation for reuse to achieve ils nbjective.

In order to understand reuse for a domain, it is necessary to understand the architecture for systems of

125

that domain, to identify the ‘right' design abstractions which involve a relationship between domain
independence and domain dependent characteristics.

SEI Architecture Studies

Several SE! projects are addressing software architectures. The SEl Software Architecture Project
[Shaw88], also known as the Vitruvius Project! is investigating application independent architectural
elements and principles for describing, analyzing, and constructing software systems. The development
of a theory of architectural design involves structures, specifications, virtual machine issues, design
abstraction, and rules combining system types, and implementation choices.

The plan of the project consists of two parts. First, a breadth-first analysis of system descriptions, across
domains, will be conducted to accumulate examples of subsystems and system organizations. These will
be categorized to identify architecturai abstractions useful in describing system architectures. Second, an
in depth analysis of specific systems will be conducted to refine the architectural elements and principles,
implementation alternatives, comparisons, and criteria for architectural decisions.

The project is currently producing a survey of systems and software architectures. This survey has
identified abstract data type{lLiskov87)], pipesfilter, layers{Obemdort88), client/server{Spector87], central
repository{(Ermang0], and dependent processes{Barbaccig8][Rosene81] as initial candidates for
architectural elements.

Another SEI project, DSSA? project [Rissmang9] [Lee89],is taking a complementary approach to software
architectures. It is investigating specific domains to identify characteristic or recurring problems of those
domains and, thenformuiating canonical solutions to those problems. The canonical solutions are
represanted as solution patterns for reuse in those domains.

Domain Analysis Provides Architectural Insights

The various domain analyses for reuse provide insight into the influence of domain dependent
characteristics on system organization. Architectural analysis will provide constructs in the form of
domain independent subsystem types, along with their integration mechanisms. The impiementation of
these types in a specific application domain invoives design and impiementation choices which
incorporate more detail, including domain dependent characteristics. Typical choices invoive data
structure representation, packaging or grouping of subsystems, distribution of control, performance and
resource usage, and allocation to hardware. Understanding architecture inciudes not only architectural
elements and interconnection mechanisms, but implementation altematives and impilications for use in a
particular domain. Exampie of alternatives and their impact are provided by various domain analyses.
The formulation of the ‘right’ architectural abstractions and their ussfuiness 10 build Detter systems
requires the insights which the domain analyses for can provide. Thus, while domain analysis for reuse
and architectural analysis differ in their emphasis on domain dependence and independence, they are

’wwm.mmmmmm«wmac.mmuawmmmammm.m
ancient architectural theory and pracice.

2Domain Specific Software Architsctures

126

mutually supportive, from different approaches, of the same goal, namely, building ‘better’ systems.

Conclusion)
Architectural analysis compiements other types of domain analysis for reuse by providing a perspective
on higher design levels which enable systematic reuse; a perspective which encompasses both domain
independent and domain dependent characteristics.

On the other hand, domain analysis for reuse supports a study of architecture by providing understanding
of domain characteristics necessary for applying architectural abstractions to a domain. For software
architectures, it is not sufficient to just identify system structures, subsystem types, and techniques for
composing subsystems into systems. These must be accompanied by implementation details about
alternatives, comparisons, tradeotfs, and application criteria. Understanding reuse for a domain will help
obtain this knowiedge.

Architectural analysis helps us build better systams more productively. Architectural abstractions will
help reduce the complexity of systems, improve their refiability through well understood subsystems and
integration rules, and increase productivity of development and maintenance by enabling more software
reuse.

BIBLIOGRAPHY

Barbacci, M.R., Weinstock, C.B., and Wing, J.M. Programming at the Processor-Memory-Switch Leve!.
In Proceedings of the 10th Intemational Conference on Software Engineering, April, 1988.

CAMP - Common Ada Missile Packages. Final Technical Report, Vole. 1, Overview and Commonality
Study. Results, McDonnell Douglas Astronautics Co., September, 1985.

Erman, L.D., Hayes-Roth, F., Lesser, V.R., and Reddy, D. Raj. The Hearsay-ll Speech-Understanding
System: Integrating Knowiledge to Resoive Uncertainty. Computing Surveys 12(2):213-253, June, 1980.

Gish, J., Prieto-Diaz, R. Domain Analysis: Procedural Model Refinement and Experiment Proposal. GTE
Laboratories, April, 1988.

Hayes-Roth, Frederick. Rule-Based Systems. Communications of the ACM 28(9):921-932, September,
1985.

Hitt, E.F., Kiuse, M., and Broderson, R. A Cors Software Concept for Integrated Control. Joumal of
Guidance, Control, and Dynamics 6(3)215-217, May-June, 1983.

Lee, K, Pfinta, C., Rissman, M. Domain Specific Architecture Report. To be published in 1989.

127

Liskov, Barbara. Data Abstraction and Hierarchy. In OOPSLA '87 Addendum to the Proceedings, pages
17-34. The Association for Computing Machinery, New York, NY, October, 1987.

Oberndort, Patricia A. The Common Ada Programming Support Environment(APSE) Interface Set(CAIS).
{EEE Transactions on Software Engineering 14(6):742-748, June, 1988.

Pamas, David L., Clements, Paul C., and Weiss, David M. The Modular Structure of Complex Systems.
IEEE Transactions on software Engineering SE-11(3):253-266, March, 1985.

Perry, J. Perspective on Software Reuse. Technical Report, CMU/SEI-88-TR-22, Software Engineering
Institute, Pittsburgh, PA.

Prieto-Diaz, R. Domain Analysis for Reusability. GTE Laboratories, Waitham, MA, December, 1986.

Rissman, M. GTE Govemment Systems Coiloquium Presentation. GTE C3? Systems, Needham, MA,
March 1989.

Roder, J. Phoenix Architecture. SIGDA Newsletter 8(2):18-22, June, 1978.

Rosene, A.F., Connolly, J.E., Bracy, K.M. Software Maintainability: What it Means and How to Achieve It.
|EEE Transactions of Refiability, 30(3), August, 1981.

Shaw. M. Toward Higher-Level Abstractions for Software Systems. Proceedings of the Third Intenational
Symposium on Knowiedge Engineering, Madrid, SPAIN, October 1988.

Spector, AZ., et.al. Camelot: A Distributed Transaction Facility for Mach and the Intemet - An Interim
Report. Technical Report TR CMU-CS-87-129, Carnegie Mellon University, June, 1987.

128

. @ GEC AVIONICS

Position Paper

Chris Taylor
Software Consultant
Airborne Display Division

process.

Software Reuse

GEC Avionics Ltd., Rochester, England.

The Airborne Display Division (ADD) of GEC Avionies Ltd. manufactures display systems for
aircraft, using some of the most advanced technology in the field. Their primary product is Head
Up Display Systems, in which the company are world market leaders, supplying systems for most
aircrafl types including all variants of the General Dynamics F-16 Fighting Falcon. Related
products include Head-Down and Helmet-Mounted Displays. The author acts as a consultant
within ADD, advising on systems development and the efficiency of the software development

These are the views of the author and do not necessarily represent those of GEC.

1: Software Component
Technology -
Management [ssues

1.1

Procurement Policy

There are two aspects of government
procurement policy which particularly influence
defense contractors developing software: the
ownership and usage stipulations of Federal
Acquisition Regulation supplement 252.227-7013
(Rights in Technical Data and Computer Software),
and the development practices required by DoD-
STD-2167A (Defense System Software
Development).

A software development organization has an
incentive to produce reusable components only if the
organization retains the right to profit from any
future use of those components. Where an

organization develops software in order to add value
to its primary product, software components are
frequently developed within the meaning of the
term "Developed Exclusively with Government
Funds” as defined by the cited FAR. That being the
case, the government generally enjoys unlimited
rights in the sofiware produced. It is therefore
questionable whether the organization could
legitimately charge for any future use of that
component, and indeed whether the organization is
then {ree to use that component in products not
intended for the U.S. government. In this respect,
current procurement policy provides little incentive
to organizations whose primary product is not
software.

Software developed for the government is
generally prepared in accordance with DoD-STD-
2167A. Although the practices detailed in this
standard do not preclude extensive use of software
components, the lifecycle model and data

requirements provide little support for or active
encouragement of software component tachnology.

129

GEC Avionics Limited
Airborne Display Division
Rochester Kent

1.2

R

Costs of Component Technology

The marginal cost of developing a reusable
software component (compared with a "custom”
component of similar functionality) is largely
associated with the work necessary to ensure correct
operation of the component under all conditions.
Where the operating environment of a component is
completely specified, as it generally is for custom
components, the manufacture and testing of the
component can be optimised for that environment.
Reusable components must be designed to operate in
a variety of environments, and testing of the
component must be extended to ensure correct
operation within environments other than that of
the product for which the component was originally
required. The more general the component, the more
costly this extra design and testing becomes.
Software to be used in real-time embedded systems
cannot be subject to incorrect or suboptimal
performance, since in many cases mission
effectiveness or operator safety are afTected. Current
tools for the development of software components do
not provide suiTicient support to allow certification
of components.

A reusable software component is an asset of
the organization responsible for its development,
and the decision as to whether a particular reusable
component is to be developed should therefore be
approached in the same manner as any other capital
project. The use of the payback period for this
evaluation is inappropriate, since it ignores the time
value of money and enourages short-termism.
Discounted cash flow methods should be used for the
evaluation. In particular, the estimated net present
value of the software component should be
determined. This has the advantage of focussing
attention on the cost of capital for the project. Since
the development of reusable components often
requires the services of scarce resources such as
experienced design engineers, the determination of
the appropriate discount rate for the project can
reflect the impact of the development project on the
eapacity of the developing organization.

Since software is not the primary product of
ADD, the organization has not established an
economic incentive to develop a repository of

@Q GEC AIONICS

reusable software components. Such components
themselves have no intrinsic value, since software
serves only to add value to deliverable hardware
systems. The concept of software reusability
presupposes that software components are expensive
to fabricate. Where custom software can be
developed at negligible cost, perhaps by automatic
code generation from a suitably formal
requirements specification, the maintenance of a
code repository becomes unnecessary. Experiments
with a rule-based automated code generator have
been carried out with some success. However, this
technology cannot be applied as yet to complex
components.

2: Domain Analysis -
Avionics Displays

2.1

Domain Analysis

Within the overall domain of software
developed for avionies displays, there are a number
of identifiable subdomains which can be used to
categorise software components.

main

Embedded systems application software does
not normally enjoy the services of an operating
system such as UNIX. Even where software is being
developed using the Ada language, a layer of
software must be constructed which provides
framing or scheduling for other components, and
performs periodic built-in test of the underlying
processing resources. Since new products are often
based on a previously developed hardware
architecture, reusable operating system components
ean be developed which provide this functionality.

2.1.2 Common Services Subdomain

All Displays product software shares the need
for common services such as mathematical routines,
digital filters, data validation and reversion
services, coordinate frame transformations and so
on.

130

@E GEC AVIONICS

1. munication Servie bdomain -
Avionic display systems are in general

“information sink” systems. The functionof a
display system is to integrate information froma
number of disparate aircralt systems and present it
to the aircrew. Most of these aircraft systems have
well defined interfaces, some being defined by
standard vendor-independent functional interfaces
(e.g. Inertial Navigation Systems and Air Data
Computers). Reusable software components can
therefore be developed to provide "protocol stacks”
which implement interfaces to these systems.

.1.4 Display Format Subdomain

The pictorial format used to present
information to aircrew is determined by the
customer. Most formats are in fact very similar,
irrespective of the particular airframe for which the
system is being developed. Software components can
therefore be developed which provide object-oriented
implementations of specific symbols. For example,
the following symbol is widely used to represent the
aircraft velocity vector (where the aircrail is going):

This pictorial "object” can be moved on the display
screen via the Cartesian coordinates of the center of
the circle. In addition, the symbol can normally be
either displayed or not displayed. A reusable
software component can therefore provide this
display service to the application software.

isplay Mechanizati i
In some cases, the information necessary to

manipulate display symbois is provided directly by
external systems. However, it is often the case that
the display system itself must generate the
symbology control information from more basic
data. Standard solutions exist for many of these
mechanizations. For example, the cartesian
coordinates of the velocity vector symbol illustrated

above can be derived from aircraft attitude and
velocity data.

Basic avionies display systems can be
constructed {rom combinations of the above
components, along with sufficient “"custom” software
to provide the display behaviour required by a
specific customer. Most display products in fact
contain additional capabilities, such as navigational
aids and the computation of weapon impact points.

3: Reuse in Action

3.1

The AdaHUD Program

In September 1988 ADD demonstrated a Head
Up Display (HUD) system at the Farnborough
Airshow in England. This private venture project
required the development of a software system
which would reproduce European Fastjet standard
symbology using unmodified F-16 C/D HUD
hardware. The software was developed entirely in
Ada, using the InterACT compiler targetted to the
MIL-STD-1750A processor. All the features of the
Ada language were used in this development,
including tasking, instantiations of generic
components, and exceptions. The successful
completion of this exercise demonstrated the
feasibility of Ada for avionics display purposes.

The development of a new display system
(phigsHUD), which would implement the ANSI
standard graphics language PHIGS was also under
way. The implementation was entirely in Ada. In
order to investigate the utilisation of PHIGS for
avionics displays, the development of a prototype
was targetted to a DEC VAXstation?, using the DEC
VAX PHIGS software. Components of the AdaHUD
software system were recompiled using the DEC

? VAX and VMS are registersd trade marks of the Digital Equipment Corporation (DEC)

131

m GEC AVIONICS

VAX native Ada compiler, with new components
being generated for the display format subdomain
which made use of PHIGS commands instead of the
proprietary graphics language used on the original
AdaHUD/F-16 development. Similarly, new
vperating system cuuspvnents were developed to
allow the new application to execute above
VAX/VMS. Finally, "communications subdomain”
components were developed to simulate the
activities of external avionics systems. Thus, the
PHIGS system prototype was constructed from
components taken from the AdaHUD program, with
new components being added where necessary, as
shown in the following diagram:

phigsHUD | i~ AdaHUD dispiay !
communication | ! mechanization !
subdomain ! subdomain !
components | ! components !
phigsHUD | phigsHUD
operating system | |disp!ay format
subdomain subdomain
components components
TAG2HUD comman services |

' subdornam components !

..

: DEC native Ada i DECVAX PHIGS _
run-tnme kemel i graphics software :
SVAXVMS ‘55;;;{.;5;;;;;;;;"j

(on VAXstation Il/GPX)

.

This approach was entirely successful, and
demonstrated the power of reusable components in
systems development. Since the phigsHUD system
was simply a prototype, the concerns over
component certification were not applicable. At the
time of writing, the deliverable phigsHUD software
is in development.

4: Summary

4.1

Software Reuse in Display Products

The most active area of reusable software
component development at the present time is the
generation of components which can be used a
number of times within a single project. There are
essentially two reasons why this is the case. Firstly,
an economic incentive exists [or the project manager
to develop reusable components which reduce the
total development cost of a product. Since there is no
attempt to justify investment beyond the time
horizon of the project, discounted cash flow becomes
irrelevant and the decision as to whether or not to
make a component reusable becomes simply that of
ensuring payback within the lifecycle of the product.
Secondly, the external environment of the
components is well known, which therefore reduces
the costs of designing and testing the components.

In order for more generally reusable
components to be developed, the legal aspects of
rights in reusable software must be addressed, and
military standard software development practices
must encourage non-waterfall lifecycle models. The
costs of generating custom software components
must then be higher than the cost of developing and
maintaining reusable software components for the
technology to become attractive.

132

©
The Charles Stark Draper Laboratory, inc.

555 Technoiogy Square, Cambridge, Massachusaetts 02139 Telephone (617) 258-2747
Mail Station 3A LHC2747@0RAPER.COM
May 19, 1989

iti aper: Reuse i tice W

Pittsburgh, PA July 11-13, 1989
Submitted by Leigh Anne Clevenger, CSDL Ada Office
Ingroduction

Can reuse really cut software development costs? Can significant amounts of software be
reused in a real project? How will design for reuse be enforced?

These are the types of questions we get when discussing Ada software reuse. Since reuse
and maintainability were important factors in the original adoption of Ada, answers to these
questions bslhould exist. The fact is that definite answers to these and other reuse questions are not
yet available.

The Ada Office at the Charles Stark Draper Laboratory, Inc. (CSDL) has been looking into
reuse issues for the past few years. In particular, our inquiries have concentrated on reuse of
software designed to be run on embedded systems, useful library taxonomies, and quality
evaluation of reusable components. This position paper describes a reuse task for NASA we are
currently performing, our in-house Ada repository, and some other ways in which CSDL is
participating in Ada reuse.

The Reusable Software Flight Certification Requirements task is being performed by the
CSDL Ada Office for the National Aeronautics and Space Administration (NASA) Level II office
in Restin, VA. The task is administered through Johnson Space Center in Houston, TX. We
began on March 1, 1989, submitted the first part of our report on May 1, and will complete this
phase of the task on September 29, 1989. We anticipate the task will continue for 2 more years.
The following is an introduction to the task, the task description and approach, and some questions
we were asked at the first task review at JSC.

Task Introduction

The use of reusable Ada software components in the development of flight software has the
ﬁnential of providing major cost savings to the wiﬂace Station "Freedom" Program (SSFP).
ASA's Software vsr;fg:“ Environment (SSE) will provide a library of such reusable Ada
components which obtained from software developed by SSFP prime contractors and from
other non-NASA Ada software development or;aniutions. owever, the use of reusable Ada
software components in SSFP flight systems requires that the components be flight qualified prior
to their incorporation into the library. This study will identify flight software qualification criteria
and the associated process that must be implemented in order to qualify reusable Ada software
components for use in onboard application software.

133

Task Description
The task will perform the following and document the resuits:

1. Describe how qualification of reusable Ada flight software fits into plans for the Software
Support Eanvironment and the Space Siation “Freedom” Program.

2. Develop a base set of requirements, assumptions, and quality criteria applicable to reusable
Ada flight software.

3. Determine the quality attributes (criteria) that reusable Ada flight software should have for
entry into the Software Support Environment reuse library as Flight Certified Ada Parts (FCAPs).

4. Define “classes” of flight software that will group reusable components based on an
evaluation of their overall reliability and performance.

S. Define the process that will be used to apply qualification criteria to potentiaily reusable Ada
software.

6. Identify and prioritize candidate components for the qualification process.
7. Apply the qualification process to representative software components from the list of
suitable candidates.

8. Identify tools and future work needed in the area of flight qualification of reusable Ada
software units.

Task Approach

In order to achieve our goal we intend to use, as a reference base, surveys of existing
software qualification criteria, current Ada repository software qualification procedures, quality
requirements proposed for reusable Ada components in technical literature and reports, and
discussions with flight software developers and quality assurance specialists.

Inidally, "classes” of flight software will be defined. This will enable the grading of each
reusable component based on the criticality of its application within the SSFP. All reusable Ada
parts designated for use in the same class of an application will have to be certified to at least that
class level. Higher levels of certification will require a systematic progression of more stringent
criteria than lower levels of certification. For each class of application, we will determine the
aaributes that Flight Certified Ada Parts (FCAPs) should have. This will entail the identification of
quality and other criteria for flight software. The process used to apply the criteria to candidate
components within the Software Support Environment Development Facility will then be defined.
Representative software componeats will be identified and prioritized for testing the process
model. In this way, the process model will be verified and validated.

Questions Raised
The following are examples of questions raised during our first review of this task:

What is the difference between "Common” software and "Reusable” software?
Common software is the term for large collections of software which are developed
to be used intact by more than one segment of a project.

134

Should we attempt to qualify other software products such as requirements,
designs, etc., or just Ada source code? Should we only qualify software products
written with reuse in mind?

What assumptions can be made during the evaluation of the quality of reusable Ada
components?

What is the estimated reduction in cost and time which reuse will provide?

Who will make people reuse software? What about possible cost incentives for
reuse? A special effort to follow up on reuse practices is needed.

CSDL Ada Repository

In looking out for CSDL's own reuse needs, last fall we developed a prototype Ada
repository, initially populated with the CAMP parts and some reliable CSDL-developed
components. This database is on-line for use by any Ada programmers and designers at CSDL.

The issues addressed in developing the repository included taxonomy definition and
automated database construction. The taxonomy for the CSDL repository was developed with the
embedded systems domain in mind We were also limited by our library management system to a
fixed database entry structure. As this is purely a prototype effort we didn't feel justified in
purchasing a new database system, and instead utilized an in-house version of IBM's Info
database. Searches are performed on keywords entered by the user. Since the CAMP Ada source
code is written in a standard format, we developed an automated process for getting source code
atributes into the database entries.

Other Reuse at CSDL,

The CSDL Ada Office has submitted a proposal to the Air Force to write a methodology to
guide the development of maintainable avionics software for advanced avionics architectures, and
to develop a second methodology to direct maintenance and support activities including effective
use of Ada reusable components. We are frequent contributors to seminar and conference sessions
on reuse, most recently the SIGAda Reuse Working Group meetings at Tri-Ada in October 1988,
the SIGAda meeting in California this spring, and the SEI 1989 Affiliates Symposium.

In all the work we have done on reuse, people are enthusiastic at the prospects of cost and
time savings, but want evidence that it works before they make the investment. By attending the
Reuse in Practice Workshop we hope to be able to focus on implementation issues with others

i;:;olved in reuse efforts. We also welcome the chance to share our research experiences with
ers.

Ada Office

A core group of computer engineers is supported by CSDL to examine important issues
related 10 Ada and software engineering. Members of the "Ada Office” are currendy participating
in projects ranging from compiler and tool evaluation to full life-cycle software engineering to
implementation of hard ine real-time embedded systems. Ada Office personnel include
Brooke Green, Anne Clough, Sidney David, and Leigh Anne Clevenger. ‘

- 135

Towards a design philosophy for reuse.

E.M. Dusink
T.U. Delft
Faculty of technical mathematics and informatics
Julianalaan 132
2628 BL Delft
the Netherlands

1. Integration of reuse aspects in the reuse process

As a necessary precondition for reuse to happen, the following topics of reuse
should be considered:

1. the type(s) of reuse, building block approach or transformational
approach,

2. the level(s) of reuse, code or design,

3. a design method which fits with the kind(s) and level(s) of reuse wanted,
L. tools which support the design method,

5. support for the actual construction of software.

Some of the topics are addressed in literature. However, no integration of
the topics into a single framework was found. Our goal is to present a reuse
framework in which all topics are considered and addressed in a coherent way.

To reach this goal a project on reuse was started at the T.U. Delft, in
which was chosen for the building block approach, including white box and
black box reuse. In this project we want to establish both reuse on source-
code level and reuse on design level. By choosing these approaches new ques-
tions arose: what has to be the components form and should be its interface
look. The question about the actual construction of software has to be
transformed into a question how to connect the components.

Our own interest in reuse started from an Ada background [Dusink], we
built our own Ada compiler [van Katwijk], we did a study to transform Algol 60
to Ada asutomatically [Huijsman], and we give courses on Ada and software
engineering. Both the choice for coaponents based reuse (building block
approach) as well as the choice for an object-oriented design method were
influenced by this background.

In this paper we address: a reuse-based design sethod in which our ideas

about components are incorporated, design supporting tools, and we present a
short description of our reuse project.

136

-2 -

2. A software design method oriented towards reuse

Design methods reported in literature are seldom tailored towards reuse,
although object-oriented design methods claim to have reuse as a side effect.
(In {Deutsch] even three forms of reuse are claimed for object-oriented
languages.) However, in none of these articles the design method is put in a
framework. '

We based our design method on the observation that experienced applica-
tion domain programmers work with a set of mental primitives of the applica-
tion domain. (In our case, the application domain is systeams programming, and
the reused components are related to the UNIX system routines.) The importance
of this domain knowledge is shown by a.o. [Levy]. We concluded that our
design method had to be domain oriented or should cover the process of the
acquisition of domain knowledge. We chose for incorporating a method of
acquisition of domain knowledge. After all, methods for acquisition of domain
knowledge are less sensitive to changes in the application domain. In this
way the resulting design can easily be mapped to existing components.

Apart from being oriented towards actually reusing software, the design
method should be such that new pieces of reusable software are a result as
well. According tu the literature mentioned, an object-oriented approach
should do the trick.

The kind of the stored components has to be compatible with the kind
looked for during the design process and with the kind delivered by the design
method. In this way unnecessary transformations are avoided. Already exist-
ing reusable code should not be excluded from reuse by the design method. As
existing code has different forms, from algorithms via abstract data types to
abstract smachines, a small probleas rose. ~ But, as in object-oriented design
all three forms are manipulated it turned out to be a non-problem.

For our design msethod we assume the existence of a repository. The glo-
bal outline of our design method, in which we considered the issues mentioned
in [Ladden], is as follows:

Step 1: A software requiresents document is made.

Step 2: Orientation on the application domain as a whole, browsing of the
repository, try to get an idea about the usual primitives/blueprints common
for the application ares.

Step 3: First, the entities on the top level are looked at. These are the
problea~space entities.

1. An informal strategy.
The top-level entities are defined, with their functional primi-
tives. Then the repository is queried to see if there are useful
components. Probably a rearrangesent of entities and their func-
tional primitives over objects is necessary or other objects have to
be chosen.

2. Formalize the strategy
The components found in step 3.1 are mapped on the defined objects.

137

-3-

The result of step 3 can be one or more of the following:

1. designed objects for which components from the repository with the same
specification exist. If more than one component exists for an object,
one will be selected at a later stage.

2. objects for which components from the repository with almost the same
specification exist, but some tailoring is needed. If more components
exist for one object, one will be selected at a later stage.

3. objects for which there are no components in the repository with the
desired specification. These objects have to be implemented later.

Step 4: Detailed design. This step is essentially the same as step 3. How-
ever, now a complete architecture is designed.

1. Develop an informal strategy. A complete architecture is defined,
thus the problem-space entities plus the necessary solution-space
entities with their functional primitives and thei. interconnec-
tiong. The repository is queried to find matching components.

2. Formalize the strategy. A formal search based on the more formal
specification of the objects that is the result of the former steps
is done.

Step 5: Implementation and testing. The objects for which no components were
found in the repository are implemented. If the transformation step from
class description to source code is too large a decomposition of these objects
can be done according to step 3 and 4. If in step 3 and 4 more than one com-
ponent was found in the repository a choice has to be made now. Furthermore,
tailoring needed for the components mentioned in step 3.2 is done.

Criteria to be used in the forming of classes are:
- minimizing the number of connections among classes
- minimizing the flow of information among classes
- getting logically coherent classes

A rationale for all three criteria is that they determine the ease with which
the architecture of the system can be understood as well as the ease with
which the functionality of a class can be understood.

A strong precondition for the design method to work is that the stored
components have to reflect at least the basic primitives of the application
domain(s). This can be obtained by surveying existing software, detecting
objects in it and extracting thea. Several systeas on the same application
domain have to be viewed and similarities marked down. The objects detected
have to be made more general before putting theam as reusable components into
the repository. It aust be recalled that saking components more general does
not imply changing them into reusable components. The ease of reuse can
become less by complexer interfaces, etc.

138

3. Design supporting tools

The terminology used in a repository and its associated facilities should be
compatible with the terminology used in the design method. The facilities
should also support the design method. Our support tools were derived from
the design method. In the following we concentrate on tools working on the
repository.

The following tools are needed:
- a browser to support step 2 of the methodology.

- a faceted scheme query system (similar to the one proposed by [Prieto-
Diaz]) to support step 3.

- a related system, with which related components to the ones already found
can be given, to support step 2 and step 3.

- a formal specification system is needed to support step 4, This system
has to work on the repository as a whole as well as on an already
selected set of components.

- fools to allow inspection of components, for both the informal as well as
- the formal strategy.

- tools to support tailoring.

We believe that the repository, together with its facilities, should not form
a small isolated environment but should be integrated in a software engineer-
ing environment.

The components can be stored in ocne ¢r several repositories according to
the application domains. Coaponent distribution over repositories is tran-
sparent to the user, unless the user asks for a special application domain.

We do not use the ideas of Prieto-Diaz of using conceptual closeness and
fuzzy logic to give an ordering of found components as a help in choosing the
best craponent. This ordering depends too heavily on the users' ability to
give weights to closeness, it is therefore very liable to give only a false
impression of helpfulness.

Procedures should be established to guarantee the quality of the com-
ponents in the repository. Our solution is to have one central repository
with a responsible librarian. Of course, such an approach is based on company
policies.

4. Our experience with reuse

At Delft, a PhD student is evaluating the design method by applying it at sys-
tem software. A repository, together with its facilities, was designed
according to the statesents mentioned before. It is currently being proto-
typed by some students. Apart froam evaluating the design method and prototyp-
ing the repository, guidelines about the appearance of cosponents are made.

139

-5 -

This is also done by a PhD student. These guidelines are being evaluated
together with the further evaluation of the design method.

Points of research at this moment are a module interconnection language
that can be used with the repository and the reuse of designs.

5. References

[Deutsch]

[Dusink]

[Huijsman]

{van-Katwijk]

(Ladden]

[Levy]

[(Prieto-Diaz]

Deutsch, L.P. (1983) Reusability in the Smalltalk-80 Pro-
grapming System. Proc. of the workshop on reusability in
programming Newport, RI, September 7-9, 1983

Dusink, E.M., Katwijk, J. van (1987) Reflections on reus-
able software and software components. In: Ada com-
ponents: libraries and tools. Proc. Ada-Europe Interna-
tional Conference, May 1987, pp. 113-126 Stockholm 26-28
May 1987, Ed. S. Tafvelin, The Ada Companion Series, Cam-
bridge University Press 1987

Huijsman, R.D., Katwijk, J. van, Pronk, C., Toetenel, W.J.
(1987) Translating Algol 60 programs into Ada: Report on a
feasibility study. Ada Letters V 7 (5), pp. 42-50,
September/October 1987

Katwijk, J. van (1987) The Ada- compiler: On the design
and implementation of an Ada compiler. PhD Thesis, TU
Delft, the Netherlands

Ladden, R.M. (1988) A survey of issues to be considered in
the development of an object-oriei.ted development metho-
dology for Ada. ACM Sigsoft Software Engineering Notes V
13 (3). pp. 2u4-30, July 1988.

Levy, P., Ripken, K. (1987) Experience in constructing Ada
programs from non-trivial reusable modules., In: Ada com-
ponents: libraries and tools. Proc. Ada-Europe Interna-
tional Conference, May 1987, pp. 100-112 Stockholm 26-28
May 1987, Ed. S. Tafvelin, The Ada Companion Series, Cam-
bridge University Press 1987

Prieto~-Diaz, R., Freeman, P. (1987) Classifying Software

fog Reusability. IEEE Software V 4 (1), pp. 6-16, January
1987

140

Ada and RESOLVE:
Toward More Reusable Ada Components

Stephen Edwards
Institute for Defense Analyses

The current interest in software reuse had led to the reexamination of modemn
programming languages. Ada, the computer language adopted by the Department of
Defense, has come to the fore under this issue, especially because of the DoD’s interest in
software reuse. As a result, weaknesses in Ada in this regard have been observed
(Gargaro 87, Muralidharan 89]. Many research efforts are trying to address these
problems, either through proposed Ada 9X changes or through completely new
languages. Unfortunately, Ada revisions may be restricted in scope to maintain backward
compatibility witli current Ada code and to avoid drastic revisions to current compilers,
while new language efforts are discounted because of the “language in a vacuum”
problem—incompatibility with software written in current languages and litte tool
support.

A possible answer to this dilemma is to create a new reuse-oriented language with a
compiler that produces target code in a commonly used high-level programming
language, such as Ada. If it is possible to ensure that all of the benefits gained by using
the new language are captured in the target language represeatation, then it is possible to
have the best of both worlds—freedom from current language restrictions while
maintaining compatibility with the current software base.

In pursuit of this idea, the language RESOLVE, currently under development by Bruce
Weide at Ohio State University, seems to be a good candidate (Harms 89a, Harms 89b].
This language is aimed at providing the following:

1. A complete encapsulation mechanism,

2. A mechanism for the efficient implementation of all language features,

3. Semantic, as well as syntactic, specifications,

4. The capability of multiple implementations per specification, and

5. Verifiability of implementations against the semantic specification.
These points address the major concerns about the use of languages such as Ada for
writing reusable software. RESOLVE is designed around a programming model which is

very different from that used by more traditional computer languages and which
encourages the exploitation of these capabilities for producing reusable software.

To demonstrate how RESOLVE addresses these issues, consider an example program unit
which is a candidate for reuse. The unit chosen for this example is a generic stack
module, often used in text books to demonstrate modular design. Figure 1 shows a

141

straightforward Ada specification for this unit.

generic
type Tis private;
package Bounded_Stack_Template is

type stack is private;

function new_stack (max_size : in integer) return stack;
-- for initializing at declaration
procedure set_max_size (s : in out stack; max_size : in integer);
— for dynamically resizing
function get_max_size (s : in stack) return integer;
function get_size (s : in stack) return integer;
procedure push (s : in out stack; x : in T);
— raises STACK_ERROR when s is full
procedure pop (s : in out stack);
- raises STACK_ERROR when s is empty
procedure pop (s : in out stack; x : out T);
- raises STACK_ERROR whean s is empty
function top (s : in stack) return T;
— raises STACK_ERROR when s is empty
function isempty (s : in stack) return boolean;
function isfull (s : in stack) return boolean;
procedure free_stack (s : in out stack);
- for reclaiming space

stack_error : exception;

private
type real_stack_type is array(positive range <) of T;
type stack is access real_stack_type;

end Bounded_Stack_Template;

Figure 1—Bounded_Stack_Template specification in Ada.

Although this seems to be a very reusable Ada generic, in practice it may often be
unsuitable. If fails to meet all five of the criteria above.
Complete Encapsulation: Initialization and Finalization

The Bounded_Stack_Template package suffers from inadequate encapsulation because it
cannot enforce the initialization or finalization of objects. First, the type stack is not
adequately encapsulated. Although there is provision for initializing this type at its
declaration with new_stack (or later, with set_max_size), the author of this unit cannot

142

enforce its initialization and, therefore, cannot be assured that all objects of type stack
start out with safe values. Likewise, there is no way the author can enforce finalization
via the free_stack routine. In some cases that may only mean space is not reclaimed, but
in other cases (such as data structures maintained with associated reference counts),
internal data structures may require finalization. Second, the parameter data type T is not
sufficiently encapsulated. The only operations defined for objects of type T are
assignment and equality comparison. There is no way for the package
Bounded_Stack_Template to cnsure correct initialization of any objects of type T
(although stacks may be implemented safely without this capability). In addition, when a
non-empty stack is destroyed, via free_stack or set_max_size, there is no way for the
package to finalize the remaining elements. There is also no way to finalize stack objects
(or stack contents) when they are overwritten by values returned from new_szack.

In addition to the above restrictions, notice that only types for which the builtin
assignment operator is appropriate can be passed into this generic. Because of the
semantics of push and top, the assignment operator is used to make copies of objects of
type T. If T were an access type which was supposed to represent a complex data
structure like a binary tree, then a separate copy function would also have to be passed
into the generic in order for the correct semantics to be implemented (alternatively, the
semantics of the procedures could be altered to eliminate copying in this instance).
Furthermore, there is no copy operation supplied by this package for the type srack,
prohibiting the use of this type as the parameter for any further generics which require
true copy semantics, since assignment on objects of stack type would not suffice. Thus, a
stack of stacks cannot be created with this specification (and provide the appropriate
semantics).

Efficient Implementation

The main limit to implementation efficiency in this unit is the copy semantics associated
with the push and top routines. Push places a copy of its input parameter x on the stack s,
and top returns a copy of the top value of the stack s. The copy operation is inherently
linear in the size of type T, and thus nothing about the performance of the package
Bounded_Stack_Template can be said independently of its instantiation parameters. In
addition, the cost of true copy semantics for large data structures will be too high for this
unit to be reused for such structures. This problem may be remedied by either removing
the copy semantics, or providing two sets of push and pop routines—one with copy
semantics, and one with produce/consume semantics.

Semantic Specifications

Since Ada specifications are purely syntactic, it is clear that no semantic behavior is
specified in this unit (beyond the parameter modes). However, a full description of the
behavior is necessary in order for a component user to understand and utilize such a
reusable unit. For a well-known abstraction like szack, this is not a significant problem,
but for less common abstractions, it is vital for a behavioral description to be available. If
thebehavxoraldmpnomsformal.thennxsnotmlylssambxguousfordzeuser,but
tools may check that the user is actually employing the abstraction correctly (L e., meeting

the preconditions). In addition, semantic specifications are necessary to provide

143

verifiability, which is discussed below.
Multiple Implementations

This Ada specification precludes multiple implementations for the same abstraction. In
some cases, it may be more efficient to use an array for a stack, such as when indexed
accessing is required. In others, a different implementation may be useful, such as using a
linked list when the size fluctuates dramatically and often. Having a single specification
and many implementations for such a unit is desirable, especially when the
implementation can be chosen at instantiation time. The declaration of the type
real_stack_type in the private part of this specification could be placed in the body,
allowing multiple implementations to be written for this unit Unfortunately, at
elaboration time Ada allows only one body for each specification. If there are multiple
implementations for a unit, only one may be chosen for all instantiations. Even if
muitiple implementations are provided, only one can exist at elaboration time. Thus, a
compilation unit could not instantiate this package multiple times, using different
implementations as appropriate. There is currently no workaround for this in Ada, other
than having a separate specification for each implementation.

Verifiability

The problems of verifying Ada code are well known. In addition, the lack of semantic
specifications does not provide anything to verify the implementations against. Lack of
verification does not prevent reuse, but does raise its cost. This is due to the fact that it is
less desirable to reuse code of unknown quality, and is more costly to debug a project
when the bugs cannot be isolated to only new code. Semantic specifications and
implementations which are verified against them would help in alleviating this problem.
Unfortunately, the cost of developing these tools for Ada may actually outweigh the
advantages.

A RESOLVE Example

Figure 2 shows the same Bounded Stack_Template in the language RESOLVE. It
addresses each of the shortcomings illustrated in the Ada example.

144

module Bounded_Stack_Template (T : type)
theories
string_theory, numbers
provides

type stack is (items : string(T), max_size : integer) = (A, 0) (* initally empty *)

procedure set_max_size (alters s : stack, preserves max_size : integer)
requires max_size >0
ensures sitems=A and smax_size = max_size

function get_max_size (preserves s : stack) returns max_size : integer
ensures max_size = s.max_size

function get_size (preserves s : stack) returns size : integer
ensures size = | s.items|

procedure push (alters s : stack, consumes x : T)
requires |s.items| < s.max_size
ensures s.items = #s.items o #x

procedure pop (alters s : stack)
requires s.items/= A
ensures 3 x: T, #s.items = s.items o x

procedure pop (alters s : stack, producesx : T)
requires s.items/=A
ensures #s.items = s.items o x

function isempty (preserves s : stack) returns empty : boolean
ensures empty iff s=A

function isfull (preserves s : stack) returns full : boolean
ensures full iff |sitems| = smax_size

end StackTemplate

Figure 2—Bounded_Stack_Template specification in RESOLVE.

Complete Encapsulation

In RESOLVE, the predefined operations for every data type are swapping, initalization,
and finalization. This is true for all types, and it is the presence of these operations for
every type which allow for complete encapsulation. All other operations must be
declared explicitly by the author of the type. All parameter passing is done by swapping,
rather than by value, so there is no implicit copying by parameter passing. All objects are
automatically initialized when they are declared, and all are also finalized before the block
is exited. Note that all of these mechanisms can be accomplished in Ada by strict
adherence to guidelines.

Efficient Implementation

Since the fundamental data movement operation is swapping rather than copying, there
are no copy semantics in this version of the Bounded_Stack_Template. Although there
are no functions in this unit, note that RESOLVE functions do not imply copy semantics

145

for their return values. Befure the assignment, the previous contents of the receiving
variable are finalized, and then the value returned by the function is swapped in to the
receiving variable, rather copied over the old value. Because there is no copy semantics,
it is possible to implement this unit efficiently for all types T.

Semantic Specifications

The pre- and post-conditions are specified along with the syntax of each procedure.
Functions are also prohibited from having side effects. Thus, a formal behavioral
description is provided without duplicating the algorithm. The user always has an
unambiguous source for clarifying his understanding of the operations of each operadon ,
regardless of the particular implementation requested®.

Multiple Implemenzations

Note that the type definition of type stack describes the type in a mathematical notation,
and that ali pre- and post-conditions are in terms of this mathematical definition. This
allows the type’s meaning and the behavior of its operations to be described in abstract
terms, without specifying the actual implementation of the data type used to achieve these
semantics. This allows for multiple implementations which model the same abstract
properties to be developed. RESOLVE specifically allows multiple mplcmcntauons for
the same specification, but all implementations must match the semantics given in that
specification.

Verifiability

The presence of semantic specifications allows for the possibility of verifying
implementations against them. In addition, RESOLVE has no assignment, so it is
impossible to “destroy” values. RESOLVE also lacks pointers, so aliasing is not
permitted. This, plus automatic initialization and finalization for all data types provides

the groundwork necessary to support verification.
Ada as a Target Language

The key to using Ada as a target language for RESOLVE is that, despite the differences in
the natural programming models supported by the two languages, the complete semantics
of any RESOLVE module can be expressed in Ada (although some may be more painful to
express than others). Moreover, all RESOLVE constructs have an efficient Ada
implementation, with the exception of procedure variables. Since procedure variables
may be implemented in Ada ecither portably or efficiently, but not both, their
implementation may be inefficient. The passing of instance parameters (passing
packages, such as instantiated generics, as parameters to other generic modules) may
incur greater compilation time, but will still run efficiently.

. Uwy.ummmmmmm.wm«m
operations become less comprehensible. These specifications still maintain their tool-based benefits,

146

Ada does allow both the module writer and module client more flexibility in some areas
than RESOLVE. Some examples of this flexibility are access types and full type visibility,
neither of which is available in RESOLVE. It is the use, not just the existence, of this
flexibility that prevents one from achieving the reuse goals listed above (these goals could
be achieved in Ada by the strict use of enforced “programming conventions” governing
the use of these language features, however the required conventions are often seen as too
cumbersome). However, Ada’s visibility control mechanisms are strong eaough to allow
the automatically generated code for a RESOLVE module to be locked inside a package,
ensuring that these reuse goals are achieved inside the unit, and eliminating tampering
from the client Figure 3 shows a possible Ada implementation of the
Bounded_Stack_Template specification.

with string_theory, numbers;

use string_theory, numbers;

generic
type T is limited private;
with procedure swap(l,r:inout T); —~ these 3 routines
with procedure initialize(x : in out T); - are the "predefined” operations
with procedure finalize(x : in out T); - on the encapsulated type T.
realization_id : string := “Standard”;

package Bounded_Stack_Template is

- Note that functions in RESOLVE translate into procedures

- in Ada where the result is "in out”. This is so the procedures can
- finalize the variable to contain the result before placing

— the answer into it (and also because the types are limited

-- private, so assignment isn’t allowed).

type stack is limited private;

procedure swap(l, r : in out stack); -- these 3 routines are
procedure initialize(x : in out stack); — the "predefined” operations
procedure finalize(x : in out stack); - on the type stack.

procedure set_max_size (s : in out stack; max_size : in integer);
- requires max_size >0
- ensures s.items = Lambda and s.max_size = max_size
function get_max_size (s : in stack) return integer;
— ensures max_gsize = S.max_size
function get_size (s : in stack) return integer;
- ensures size = | s.items
procedure push (s : in out stack: x : in out T);
- consumes X
— requires |s.items| < s.max_size
-- ensures s.items = #s.items o #x
procedure pop (s : in out stack);
-- requires s.items /= Lambda

147

- ensures ThereExists x : T, #s.items = s.items 0 x
procedure pop (s : in out stack; x : in out T);

- finalizes current value of x, then

- requires S.items /=Lambda

- ensures #s.items =s.itemso x
function isempty (s : in stack) return boolean;

— ensures empty iff s=Lambda
function isfull (s : in stack) return boolean;

— ensures full iff |sitems| = smax_size

private

type real_stack_type;

type stack is access real_stack_type;
end Bounded_Stack_Template;

Figure 3—Bounded_Stack_Template specification in Ada.

In addition, clients written in Ada will be able to reuse compiled RESOLVE code as easily
as other RESOLVE modules. Of course such clients will have to follow certain
conventions which are required by the RESOLVE module (such as initializing and
finalizing data elements) but which are unenforceable from within the RESOLVE module
itself. In addition, RESOLVE specifications can be written for lower level Ada units
which obey RESOLVE conventions (i. e., provide the required primitive operations on
new data types and follow the required programming guidelines), and then higher level
RESOLVE units can reuse this code. [Harms 89a] gives the best overview of the
RESOLVE programming paradigm, its differences from more traditional approaches, and
efficient implementation methods.

148

REFERENCES

[Gargaro 87]
Gargaro, Anthony , “Reusability Issues and Ada,” IEEE Software, July, 1987.

[Harms 89a]

Harms, Douglas E. and Bruce W. Weide, Types, Copying, and Swapping:
Their Influences on the Design of Reusable Software Components, Ohio State
University, March 1989, OSU-CISRC-3/89-TR13.

[Harms 89b]
Harms, Douglas E. and Bruce W. Weide, Efficient Initialization and
Finalization of Data Structures: Why and How, Ohio State University, March
1989, OSU-CISRC-3/89-TR11.

[Muralidharan 89] ‘)
Muralidharan, S. “On Inclusion of the Private Part in Ada Package
Specifications,” Proceedings of the Seventh Ann:al National Conference on
Ada Technology, March, 1989.

{(Muralidharan 88]

Muralidharan, S. and Bruce W. Weide, On Distributing Programs Built from
Reusable Software Components, Ohio State University, November 1988,

OSU-CISRC-11/88-TR36.

[Weide 86a]
Weide, Bruce W., Design and Specification of Abstract Data Types Using
OWL, Ohio State University, January 1986, OSU-CISRC-TR-86-1.

[Weide 86b]

Weide, Bruce W., A Catalog of OWL Conceptual Modules, Ohio State
University, January 1986, OSU-CISRC-TR-86-2.

149

A Model Solution for the C3I Domain
Charles Plinta
Software Engineering Institute

Introduction

This paper! briefly describes a specific portion of recent work performed by the Domain Specific Software
Architecture (DSSA) project at the Software Engineering Institute (SEI) - the development of a model
solution for message transiation and validation in the C31 domain. Based on this experience and our
involvement with programs in the C31 domain, future considerations are described. These considerations
involve identifying potential models within a domain and making recommendations for developing and
documenting model solutions that will enable the mode! solutions to be reused.

Background

The work was performed in the C3I domain by Charles Plinta, Keaneth Lee, and Michael Rissman,
specifically in conjunction with the Granite Sentry Program. Granite Sentry is a phased hardware and
_software replacement of the systems in the Cheyenne Mountain compilex of NORAD. The DSSA project
supports the program office by attending reviews and providing advice on technical issues. In addition, the
DSSA project members participate in the design discussions and working group meetings with the lead
designers. As part of our involvement the DSSA project developed a model solution to perform message
transiation and validstion (MTV). The MTV model is currently being used by Granite Sentry Phase II in
its design specification and the MTV model solution will be used t0 implement that portion of the design.
The MTV model solution is also being used by other programs developing systems in the C3I domain:
Strategic Command and Control System (SCCS) and MCC/MSS.

An Overview of C3I Systems

Figure 1 shows a high level block diagram of a typical CI system. The Gazeway sends messages to and
receives messages from all external systems. The Gazeway is an interface between the C3{ system and all
other systems. Messages? are communicated between systems. The messages enter and leave the C3l
system as external representations of the information whose formats are defined by the extemal sysiems.

The Mission Processor maintsing a view of the world based on the views (external representations)
provided by the other sysiems. This world view is kept in an internal represensation 1o allow processing of
the information based upon the C¥1 systems mission requiremests. This view is available to other systems
via external representations of the information and the user via user representations of the information.

“This work is spossored by the U.S. Deparmmaent of Defense. The views sad conclasions contained in this peper are solaly thoss of
the anthor(s) sad should st be imerpresed o8 representing official policies, sither expressed or implied, of Camegis Mallon
Usiversity, the U.S. Air Foros, the Deparsmant of Dafanse, or the U.S. Governmens.

34 message contains pieces of relssed informetion

150

The user interface (User I/F) provides a window into the mission processor's view of the world. It presents
all or a subset of the world view, as requested by the user, in a form that is understandable to the user. The
user can also add information w0 the Mission Processors view of the world. The messages enter and leave
the User I/F as user representations of the information whose format is understandable 0 a user.

The Journal is a storage device used for "safe” storage of all representations of messages for recovery,
analysis, and testing purposes.

Finaily, Figure 2 shows a simple example of the different representations of information in a specific
message.

S

'S ¢’ 1 Systam
T : G

3

M " \ Mission

S RepressntationNg{ Processor

[

Figure I: C3I System Block Diagram

External Representation:
*A/1810244/1<c>"

Internal Representation:
Message := (Location s> Peterson ArS,
Date => (Julian Day => 181,
Sous a> 2,
Minute => 44),
Status =) Operatiomal);

User Representation
. Peterson AFB 181 2 44 Operational”

Figure 2: Message Representations

The Problem

Based on an analysis of Granite Sentry specifically, and the C*I domain in general, we arrived at the
following MTV requirements.
1. Support real-time activities:
1Tmnslmbnmdvaﬁdnhnofemnlmgewmﬁonsmmmnlme
representations (and vise-versa) to support mission processing.
b. Translation and validation of all message representations to support writing t a journal.
2. Support non-real-time activities:
a. Generation of external message representations (0 support simulation scripts for training
purposes.
b. Generation of all message representations to support system testing.
¢. Transiation and validation of all message representations to support reading from a journal.
3. Support interactive activities:

a Transistion and validation of external message representations (0 internal message
representations (and vice-versa) to- support manual entry of information along with

b. Translation and validation of user message representations (0 iniemnal message representations
(and vice-versa) to support manual entry of information along with presentation and correction
of invalid information received.

The MTV Model Solution

This paper will not attempt to go into the details of the solution becanse we are limited on space’. Instead,
we will present an overview of one of the two parts of the MTV model solution, the typecaster model
solution.

Typecaster Model Functional Description

The typecaster model provides the capability 10 convert between either the user representati-m or universal
representation of a message and the internal representation of a message. The conversion entails a
real-time validation that includes syntactic analysis of the range of values possible for the elements and
checking of any inter-element dependencies. If a problem is found, the conversion process is stopped, and
the caller is notified. The typecaster model also supports a diagnostic, noa-real-time syntactic analysis of
both user representations and universal representations. A diagnostic indicator is returned that supports
error detection for both user representations and universal representations of a message. Figure 3 shows a
biack box diagram of the typecaster model.

’Ansuhd-’nlqmm-”-m-udumMS&M&C‘IMM-‘V&“‘&
forth-coming,

‘AMMh-MMJhMiu“ 1 is the extormal representation wish
punctustion removed end all flaiii padded 10 fixed lemgths. The umiversal represstation of the message shown ia figers 2 is
“Al8102441°

152

Typecaster
MMadel

""Mvaiue
-‘-T. lmage
"-Mcheck
“Wvalue

"‘-’l,lxﬁaga

“~ECheck

Figure 3: Typecaster Model Black Box Diagram

Typecaster Model Solution Building Blocks
The parts of the typecaster model solution fall into three categories. All the components are necessary o
provide the functionality of the typecaster model described above.

1. Discrete Typecaster Generics - Ada generic packages that serve as the foundation of the
typecaster model solution. Mmbemp:hdmhhhhtyﬁxmbym
portions of the typecaster model solution.

2. Discrete Typecaster Templates - Ada coding tempiates’ that are the building blocks of the
typecaster model solution. The templates provide the capability 10 perform typecasting on
Ada discrete types. Instances of these templates are layered upon the discrete typecaster
generics. The templates also provide a test procedure that does exhaustive testing, based on
the range of the Ada discrete type, and interactive testing.

3. Composite Typecaster Templates - Ads coding templates that are aiso building blocks of
the typecaster model solution. The tempiates provide the capability to perform typecasting on
Ada composite types. Instances of these are layered upon instances of both discrete
typecaster tempiates and other composite typecaster templates. The templates also provide 2
test procedure that does canned testing, based on test cases supplied when the template is
. inted

Typecaster Model Solution Building Plan
The following are the sieps invoived in applying the typecaster model solution 10 a set of messages that
need to be transiated and validated.

1. Compile Foundation Utilities - The utilities that form the foundation of the typecaster model
solution must be compiled. These are the components in the Discrete Typecaster Generic
category.

A wmplus is a file contsining sm incompless Ads package specification, body snd tent procedure. The incomplens parts of the
cods sre marked with placeholders. The wemplase is instantisted by sspplying informetion in place of the placsholders vie editor
petioet: ‘

163

2. Analyze Message - Define the internal representation description (Ada type) based on the
information provided in the description of the extemal representation. An Ada type for each
field must be defined.

3. Instantiate Typecaster Model Solution - Use the templates provided by the typecaster
model solution 0 create an instance of the model solution based on the internal representation
that results from the message analysis performed in the previous step.

a. Identify and Build the Discrete Typecasters - The discrete typecasters needed to
transiate and validate the discrete elements of a message are identified based on the
Step 2. Check 10 see if any instances of them already exist; some may have been
created for other messages. Generate the discrete typecasters that don’t exist using the
sppropriase discrete typecaster templates. Run the generated test routines to check the
discrete typecasters.

b. Identify and Build Composite Typecasters - The composite typecasters needed w0
group discrete and composite elements of the message are identified based on Step 2.
Check to see if any of them already exist; some may have been created for other
messages. Generate the composite typecasters that don't exist using the appropriate
composite typecaster templates. Run the generated test routines to check the
composite typecasters.

¢ Build the Message Typecaster - The message typecaster is generated using the
appropriate composite template, usually the record typecaster template. Run the
generated test routine to check the instance of the typecaster model solution for the

message.

The user of the model solution need not be concemed with the generics unless the code performance (sizing
or timing) is not adequate to meet his requirements. The user need only be concerned with the templates
and instantiating them as necessary to obtain the MTV capabilities required by the system under
development.

Typecaster Software Architecture
ﬁm4mmmnﬁmmmmmmewmoddwlmnmm
The software architecture is shown as Ada packages and the dependencies among them.

The typecaster portion of the software architecture is based upon the structure of the Ada type. When the
typecaster model solutioa is instantiated for a particular message, the resulting architectural components are
instances of the discrete typecaster templates and composite typecaster templates, one for each type used to
describe the intemal representation of the message. The typecaster architecture is therefore hierarchical in
typecasters are dependent ypon both discrete typecaster instances and compasite typecaster instances.

Conclusions

The DSSA project has developed a MTV model solution for a problem that recurs in the C3! domain.
Granite Sentry Phase II is using the MTV mode! solution. The functionality provided by the MTV model
solution meets their needs, and besed on early timing and sizing analysis it also satisfies their performance
requirements. Also, they sre able 10 generate and test the software 0 transiate and validaee s typical
message in less than two hours.

mmmmmww@mmm;mmm:mm.m
developed a process for identifying models. This process entails identifying problems that recur on &

154

Message

Ceasas

—’al-hﬁ— i
\ s A a head) Y,

Figure 4: Typecaster Model Solution Software Architecture
Pproject or across projects in a domain. Once identified, solutions (o these problems are developed and
made into models. Also, while developing the MTV model solution, we developed a way of documenting
models to make them recognizable, usable, and adaptabie®.

Based on our experiences developing, documenting, and transitioning the MTV model solution w the C31
domain, we feel that the development and use of domain specific models in the software engineering field
will provide high payoffs.

Future Considerations

To achieve these payoffs, domain specific model bases must be populated and the software development
process must be refined to take advantage of an existing pool of mode! solutions. These should occur as an
evolutionary process.

First, domain experts need to identify recurring problems in their domains and develop model solutions for
them. We will atempt 0 validate and refine our recurring problem approach for identifying targets o
model by applying it in several domains.

Second, mode! solutions need 10 be developed and verified. Based on our experience with Granise Sentry,
solutions should be developed and verified for a few instances of the recurring problems. The instances
should also be tied together 10 demoanstrate that the models can be integrated 10 meet sysiem requirements.
Verification should be based on both functionality and performance. After the solutions are verified, the

Rich D'Ippoliso was instremental in belping 10 define how 2 modal solution shonld bs docurnented 10 maks it remssbis at both the
dasign and impiementation levels.

155

next step is to generalize the mode! solutions using code templates. The code templates help to insure that
each instantiation of the model provides the functionality that is specified by the model. The templates also
promote code and comment consistency. These characteristics of the template should aiso promote reuse.

Third, models solutions need 10 be documented so that they are recognizable, usable, and adaptable. We
propose the following documentation outline:

1. Problem Description - (everyone) Describes the problem the model soives.
2. Model Description - (deagw)hovﬂaaﬁmmﬂmdmmd&npnmofmcmod&
3. Model Solution Overview - (designer and detailed designer) Provides an overview of the

mode! solution. Lists the parts, how to apply them, and architectral ramifications of the use
of the model solution.

4, Model Solution Application Description - (detailed designer and builder) Describes how t0
use the model solution to solve your problem.

5. Modet Solution Detailed Description - (builder, maintainer and mode! adapter) describes
the details of the model solution impiementation.

6.Model Solution Adaptation Description - (designer, model adapter model adapter)
Describes how to adapt the model solution if it doesn’t quite solve your problem.

7. Open Issues - (everyone) Issues of interest 0 everyone. These include functional limitations,

Finally, the development process needs to be refined to encourage systems to be designed by selecting the

appropriate models from the model bases, verifying designs based upon model solutions and finally,
building the system using the model solutions used to verify the designs.

156

A STUDENT PROBLEM TO WRITE A GENERIC
UNIT FOR A REUSABLE COMPONENT

BY RUTH RUDOLPH
COMPUTER SCIENCES CORP.
MOORESTOWN, NJ

157

One of the assignments in an intermediate Ada programming class is to write a
package to implement an Abstract Data Type (ADT). The particular ADT that is
to be implemented is a set. Sets exist in Pascal as the “Set Data Type"”. Ada
has been criticized for not including the set data type in the language definition.
Therefore this problem provides an opportunity for the student to:

1. Show how easily the Ada language can be extended.
2. Create the reusable component - an ADT for sets.
3. Demonstrate the ease and degree of reusability for this generic unit.

PROBLEM
The student is given the foilowing two part problem:
Part 1

A common application of sets is in the }ealm of numbers. We frequently refer to
the set of integers, the set of prime numbers, the set of natural numbers, and so
forth.

The student is asked to write a program that computes the following for
numbers between 1 and 100 inclusive:

The set of numbers divisible by 2, 3, or 5

The set of numbers divisible by 2 or 3, butnet by 5

The set of numbers divisible by 3and by 5 ’
The set of numbers not divisible by 3

158

To support the solution the student is provided with two library units:

1. The specification of the ADT for sets

2. A function to compute muitiples, to generate sets of all numbers that
are muitiples of some integer and are in the universe provided by the

set package.

The student must write the package body and write a driver to use the library
units, i.e. the set package and the function.

Part 2

After completing Part 1, the student is asked To rework the problem by making
the set package a generic and including a generic instantiation for the reusable
unit in the driver. The student discovers that placing the instantiation in the
driver denies access of the ADT package to the function. The function requires
two definitions to be in scope before it can be compiled. First the base type
which describes the set universe (the actual type which will be used for the
instantiation) must exist. Second, the insert procedure which is advertised in the
set package specification must exist.

There are at least four possible solutions:

1. Embed everything in the driver. The most obvious soiution is to
deciare the actual type and instantiate the generic in the driver
procedure. The function also must be embedded in that procedure.
A slight change has to be made in initializing the constant sets. They
can no longer be initialized in the declarative part because the Ada
rules require basic declarations to precede later declarations. Since
the function is no longer a library unit, but a later declaration in the
driver, the constant set object cannot use the function to obtain their

159

initial values. This may be unimportant but it is no less a
consequence of using the generic.

The student no doubt will select the above solution. But suppose this was a
more complex example and the embedded function was very useful as a library
unit. Is it possible to retain it as one?

2.

Put the actual type, the instantiation and the function in a package.
Although this is a possible solution it does not seem to accomplish
very much other than to simplify the driver. Again, the problem is that
the function must be preceded by the actual type definition and the
instantiation.

Put the type and generic instantiation in a package and embed the
function in the driver. Similar to solution two, this doesn’t offer any
real advantage over the first solution, but at this point in the
investigation one’s curiosity has been aroused.

Put the type and generic instantiation in a iibrary package and the
function in the library. If the goal was to maintain the function as a
separate library unit, this is the only workable soiution. It does,
however, require an extra package which may become burdensome
in a large library. h

160

Although this may appear to be a trivial exercise the lessons iearmned from this
endeavor are of great value:

1. Identifying a generic candidate may appear obvious but may present
problems that are not intuitively identifiable.

2. Implementing a program as a generic may be relatively easy but may
not take into consideration certain factors that are relevant.

3. Using the generic easily and without rewriting or changing the
organization of the original program may not be possible.

161

An Informal Experiment in Reuse

Roger Van Scoy and Charies Plinta
Software Enginecring Institute
Camegie Mellon University
Piusburgh, PA 15213

Introduction

This paper! focuses on the practical impact of reusable software in system design. This paper is the result
of work performed in creating a software artifact and, as such, the insights presented are based solely on
that experience. The purpose of this paper is 0 use that experience to provide insight on ways to facilitate
the use of software components.

This exercise in reuse resuited from work done by the Software Engineering Institute on the development
of a prototype Real-Time Monitor (RTM) for Ada applications in support of the Ada Simulator Validation
Program (ASVP)2. An RTM is, in its simplest form, a tool that can read and write data (e.g., variables) in
an executing application; it is essentially a primitive, remote debugger. Our task was to build a tool
familiar 1 the ASVP contractors (from their flight simulator experience) that executed in conjunction with
an Ada application. The concepts needed to build an RTM were not new, but interfacing one to an Ada
application in a distributed environment was. Since the RTM was built for use in conjunction with
real-time applications, it was designed to execute in a CPU"s spare time and minimaily perturb the essential
timing of the application.?

The RTM task was a modest effort, as illnstrated by Table 14, In addition w0 being a practical and useful
artifact (for the ASVP contractors), the large percentage of existing software components used in building
the prototype make it an excellent vehicle for discussing some of the issues related to using software
componeats. We start by distinguishing between the two categories of reuse:
1. Design reuse: The reuse of concepts or software components providing functionality that
satisfies design element specifications. The Virtnal Terminal, Command Line Interpreter,
2. Implementation rense: The reuse of software components providing functionality that aids
in implementing a portion of a design clement specification. The Binary Tree or Linked List

Mpmmrmmmdmwmmﬁmddpm

VThis work is sponsoved by the U.S. Deparsment of Defense. The views snd comcinsions contained in this papar ere solely thoss of
the euthor(s) snd shomid act bs imerpreted s represeuting official peliciss, either exprassed or implisd, of Cammegis Mallon
Univarsity, the U.S. Air Forcs, the Deparsment of Defanss, or the U.S. Government.

IASVP wes & ressarch snd development ccmract spansoved by the program offics for Training Symems &t Wright Penerson Air
l'cll.nh-. The costrace called for the mdesign and implamsstation of two existing flight simalators in Ads esing sound software
enginesring tochniques. The comtract was awarded 10 two contractors with the objective of leaming lessons show developing fligin
simulaors in Ada.

ISee (3] for an overview of the project and its results.

“One pervon worked full time (or thres months on the implementation.

162

Lines Type of Code

1,643 Command Line Interpreser subsystem

2421 Virmal Terminal subsysiem

2291 Forms Management subsystem

1,593 Abstract Data Types (Binary Tree, Linked List, etc.)
7948 Total reused lines

1,054 New code

9,002 Total lines

Table 1: Ada Statement Count for RTM

Reuse in Design
Looking back on our design work, we feel that kmowledge of reusable software components that implement

well anderstood, high-level concepts should be used during the design process. To realize this in practice
however, places a number burdens on the designer.

First, the requirements of the system must be stated abstractly enough to allow design reuse 0 occur. It is
casy for implementation biases to inadvertently creep into the requirements or design, resulting in an
over-specified sysiem. Systems must be specified abstractly and concisely. The distinction is that a
specification must indicate what is 10 be done, rather than sow it is to be done.

For example, one component in our top-level design was a command line interpreter. Figure 1 illustrates
some differences between an abstract specification and an over-specification of a command lins interpreter:

1. What it needs a commend a string(1:90)

2. What it provides command flald interpretation strings, intager ¥s, real #s

3. What it does parsing of comunand line LALR] perser

4. What resourcas used < x% of aveilsble mamary 20 dynamic memory allocation
5. What could hsppen ermon in command raise command_error excepdon

Figure 1: Command Line Interpreter Specification

While the over-specification is useful if one is building a command line interpreter, it hss constrained the
design element to the point where only a hand-crafted component will meet the specification. The abstract
specification on the other hand, is general enough 0 allow many possible command line interpretars ©
meet the specification. Thus, designing with the intent t0 reuss components forces the designer 10 carefully
consider the ramifications of each requirement or design element; concentrating on what (design) rather
than how (implementation).

Second, reuse implies a certain flexibility on the pan of the designer. Oncs a sst of powential components
has been identified, one must choose the “best” one. Ideally, a perfect match is desired—one where the
component meets the requirements and is compatible with the design. This rarely happens, posing two
probiems:

163

1. What criteria does one employ to measure potential components for closeness of fit?
2. Based on a close fit and a decision 10 use a particular component, what is involved to fit the
component into the system?
a Docs one alter the requirements and/or design (0 [it the new component into the
system?
b. Or does one modify the component (o fit the requirements and/or design?
Clearly, the first step in access the suitability of a component is a “technical best fit” analysis. The designer
must evaluae the poten. J components with respect (0 the requirements and the design. This analysis
involves creating a set of prioritized design criteria that must be satisfied by any acceptable component and
grading each potential component according to thess criteria.
Assuming that one or more components meet the “technical best fit” criteria, the decision to actually use the
component requires a “management best fit” analysis. The criteria we used in performing the “management
best fit* analysis were:

Requirements Must the requirements change to accommodate the component? If so, what are
the system ramifications and the cost of the change?

Design Must the design change 10 accommodate the component? If so, what is cost of
the change and how does it impact on work in progress, other components, and
the design documentation?

Component Must the component itself be modified? If so, how much will it cost to modify

the component? A critical factor here is, whether the authors of the component
will make the needed component modifications. If not, then there is a need o
analyze the documentation and implementation 1o determine the effort required
by the new engineers to pick up the component and modify it
Schedule How does the decision t0 reuse or not to reuse affect the overall project
schedule?
For instance, one difficult issue we faced was extending the functionality of the Forms Management
subsystem into an area for which it wasn't explicitly designed. We opted to modify the component rather
than the design, as described below.

The Forms Management subsystem had foar parts to it:

1. A part that builds form templates,

2. A part that allows the user to fill in a form,

3. A pert that displays filled-in forms, and

4. A pant that allows an application program to extract data from the form.
These parts were implemented to operate as independent programs in & non-real-time environment. Our
task was (0 integrats them into a system that allowed forms 1 be defined interactively and filled in
dynamically in real-time. The task of integrating the parts was oon-trivial and could not be done by
looking st the availabie documentation and code. Rather, it required that we prowtype the subsystem and
study the problem experimentaily before deciding to proceed with the component. In the end, the Forms
Management subsystem was successfully extended. But & what cost? In this case, the savings were
substantial, since this represented about 25% of the total code in system. But, had the integration effort
failed, the time spent on the mini-protwtyping effort would have been wasted and the needed component
constructed by hand.

164

Clexly, we don’t feel it is a simple matter (0 pick out a component and “slap” it in place. Neither the cost
nor the risk of reuse are negligible. The decision to use an existing component or build a new one must be
carcfuily evaluaied. The cost advantages of adapting an existing component are potentially tremendous;
likewise the cost of failure becomes potentially exorbitant. Again, the burden here is on the designer w
formulate and apply the acceptance criteria for cach component.

This brings us to the actual components themselves. All the components we used were obtained from the
Ada Software Repository® via a manual search process (2n automated search mechanism would have been
an enormous help). We found a wide variation in component documentation. This leads us t0 suggest a
minimum set of information necessary for specifying components. Two levels of information are needed:

L. A high-level description of the functionality provided by the component.
2. A detailed description of the component (along the lines of IEEE 1016 [2]).

The high-level description of the functiorality provided by the component must include the familiar
concepts provided by the component. The concepts embodied by a component must be well known and
thoroughly undersiood for a component t0 be recognized as reusable. This implies the need for
domain-specific component libraries, where the background of potential users gives them a common
vocabulary with the component implementors. This information will is needed © locate candidate
components.

The detailed description of the component should incinde the following information:

1. What it needs. Specification of the information that the component needs to perform its job
or change its state.

2. What it provides. Specification of the information that the component makes available after
performing its job or changing its state.

3. What it does (not to be confused with how it does it), Specification of the functionality
provided by the component, a description of its job. This should include a description of the
concepts provided by (embodied in) the component.

4. Performance documentation (especially in the real-time worid). This needs to include items
lhdmhguwmaymaymkmmmmwm
collection versus manual garbage collected, exc. (See (1] for example).

5. Rationale-type documentation. It is not sufficient to simply explain how something is done in
code; this can be glesned from the code itself. What is needed is wiy & specific action is
performed or why the component is implemented in & specific manner. This type of
informagion is of great value, since it gives the user a glimpse into the mind of the
component’s designer.

6. Test software and documentation. Perhaps the primary obstacle to component reuse is the
adequacy of the testing the component has undergone. Without documented evidence of the
quality of the component, this wark must be repeated with every uss of the component. This
process is mads more difficuit becanse the software is often unfamiliar. The inclusion of test
mechanisms and expected results along with the component is critical.

This information is essential (0 performing the technical and management best fit analysis discussed above.
mmamm;:m@mmwmmmmuhmm

’hj:lnu-.h.nnam)as-lm«mumw.mm-mr-up.wm.nc

165

Conclusion

Clearly, reuse of sofiware components can be important in building software systems, but it places
requircments on both the component users and implementors. These requirements indicate a necd for
additonal work in the several areas:
* Requirements generation: Approaches (o requirement and design specification that allow for
and incorporate reuse need (0 be developed and practiced.
 Analysis techniques: Techniques and methods for deciding when a component is acceptable or
when a component must be built,
¢ Componenet libraries: There is a need for domain-specific libraries containing quality, tested
components. Also, any libaary of significant size needs a taxonomy and a database 0 aid the
potential user in locating components of interest,

¢ Documentation: An information content standard needs 0 be developed and required of all
components in a library.

Acknowledgement

Our thanks to the other Dissemination of Ada Software Engineering Technology (DASET) Project team
members, Michael Rissman, Richard D’Ippolito, Keaneth Lee, and Timothy Coddington, who contributed
10 the Project on which this paper is based.

References
(1} Booch, Grady.
Software Components with Ada.

The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

(21 IEEE Recommended Practice for Software Design Descripdons.
';'he llmmwo itute of Electrical and Electronics Eagineers, Inc., 1987.
td 1016-1987. '

B3] VanScoy,R.
Prototype Real-Time Monitor: Executive Summary.
Technical Report CMU/SEI-TR-87-35, Software Engineering Institute, November, 1987.

166 .

POSITION PAPER
REUSE IN PRACTICE WORKSHOP

Locating Resources For Reuse-Based Development!

Sholom (Sanford) Coben
Software Engincering Institute
Camegie Mellon University
Piusburgh, PA 15213
NET: sge@seicmu.edu

Abstract

Locating resources in a collection of reusable software
requires ingegration of msnagement and retrieval
methods. The maintainer of the collection will need
different operations and modes of access from an
application developer using the collection. Users of the
collection will want access 1o it at different phases of the
life<cycle. Finally, users will have expertise in different
spplication domains, but may desire access to the same
information.

This paper briefly examines methods for managing
and locating reusable resources. These methods include
both auribute- and facet-based information retrieval
The paper also introduces a new method to support
search and retrieval that capures information specific to
an end-user spplication (both requirements and design)
and matches that information to resources in the library.
Insegration of these approaches is essential for
successful reuse-based software development.

1. Introduction

Successful application of reusable software assumes
that a user can find and use software from a library of
reusable resources. A catalog maintenance scheme to
control the resowrces and dats sbout them and an
information retrieval scheme to obtain the resources and
data for the user are essential Current techniques for
data bese models snd library classification methods.
These techniques are sppropriate for code components
intended for a range of applications, where decisions
sbout potential use occur during software design and
implementation.

These traditional data base and classification methods
limit the utility of a library of domain-specific reusable

1Sponsored by the U. S. Department of Defense

software. These methods are directed at the detailed
design and coding stages of softiware development
However, for applications in the areas of aviomics or
command and contol, the decision process for
determining the sppropriateness of a reusable resource,
even code components, should be concurrent with the
software requirements and early prototyping phases.
Without knowledge of the reusable resources,
requirements specification can restrict the use of specific
resources. In fact, certain key systems decisions, such as
the choice of specific bardware or aigorithms, may
totaily preciude the use of a reusable resource during the
later stages of software development. Software
specification decisions made in light of existing software
resources, as hardware design decisions are currently
made in light of existing hardware components, will
result in an increase in software reuse.

Current mechanisms for canloging and retrieving
code components are aimed at software engineers, at a
point in the development when systems design and
software requirements are compiete. The mechanisms
assume that the user has firm software requirements, and
possibly design, and is searching for code componeats to
be used in implementation. Furthermore, most existing
requirements for reuse are built upon estblished
computer science models, e.g., abstract data types, tools,
etc. These assumptions are not appropriate for the real-
time embedded syswems spplications engineer who must
make decisions in such areas as choice of hardware
devices, searching and tracking wechniques, and Kalman
stassgies for finding and retrieving oot only code
components but aiso other reusable resources based on
the application, oot oo the compooents themseives, and
must employ these strategies early in the development.
This paper will describe methods for retrieving reusable

software that also address the needs of application
engineess.

The next section of this paper summarizes the
problems in managing a collection of reusable resources.
The section describes why proper management of
resources must account for different sources. various
classes, and noo-uniformity in packaging of reusable
software. The next two sections of the paper contrast
and show examples of existing methods of locating
resources in a library. Examples of the search
techniques will demonstrate their utility in a variety of
settings. The concinding section will also emphasize the
impormnce of integrating these methods for
management and retrieval.

2. Reusabie Resource Management

The management of a large collection of reusable
software resources poses a serious storage and cootrol
problem. Management of the resources must take into
account control of the information to initially store the
resources and to support changes in the information due
'0 maintenance. This type of collection management
support, due to the dynamic namre of a reusable
software collection and to the fact that the collection is
primarily electronic. However, smdying contemporary
tends in Library science can offer suppont to the
management of reusable software,

Software collections will be built from reusable
resources from a variety of sources. The collection may
come entirely from a single project or set of related
projects within a singie organization, or the source may
be at the corporate level, crossing project domains. The
collection may aiso inciude resources from external
sources, either government or commercial.

The compiexities of managing the collection increase
when the sources are corporate wide or external.
Furthermore, the variety of ciasses of russbie software
resources (code components, documentation, functional
or performance test software, code generators,
architectures, requirements, etc.) lesds to 3 storage and
control nighemare. Resources may fall into differemt
categories for each ciass of resources, such as source
code files (components), graphics (documentation and
performance tests), or text (documentation). The storage
methods must account for each category and the fact that
8 single resource may hsve elements from multiple
categories.

In addition, the same category of resource may come
packaged in numerous ways. For example, source code
may come in single files (Booch WIZARD, Ada
Software Repository), multiple files (CAMP), or
multiple directories (GRACE Compooeats). The
manager of the collection must decide whether o
artempe uniformity in storage, leading to configuration
conwol difficulties when updates appear, or maintaining
the original structure, making use of the collection
diffScuit.

The comtemporary library, or resource center, has
deait with many of these problems. Collection building,
for example, takes im0 account the variety of sources for
government
publications, technical reports fiom industry or
storage problems for electronic media, with research in
information retrieval looking at CD-ROM and hypertext.
The coilection and storage problems, while significant,
are not the main topic of this paper, however.
Management of the collection must also include control
of the methods to search for and retrieve information
about the resources. The remainder of this paper
describes techniques for supporting this second function.

3. Attribute-based Retrieval

The managememnt of reusable software resources
requires the development of appropriste attributes and
methods for storing and retrieving them. In traditional
cataloguing, referred to as descriptive cataloguing in
library science, the resources of a collection are
described through their atributes. For reusable
resources, an atribute might be the name of a par, the
function of a subsystem, or other information about the
resource. For searching a catalog of reusable resources,
ooe specifies a specific attribute or a combination of
attributes and values for those attributes. The searcher
obtains resources that have those values and is provided
with information sbout the resources. This descriptive
information is also in the form of auributes of the
resource.

Successful use of this retrieval mechanism requires an
understanding of several key factors:

1. The meaning of the attributes

2. The range of values a specific atribute
may take

3. The structure of the collection of resources

4. The ability 10 combine or add attribules

168

S.The relationship of the atributes to
fequirements for an application

Tais level of understanding suggests that the user is
highly familiar with the collection of compooents he is
dealing with. Primarily, this method of searching for
reusable resources is zimed at a software engineer, with
knowledge about the specific resources. The method is
most appropriate at design time. The manager of the
collection will also use this approach.

4. Semantic-Based Retrieval

Semantic information about a resource tells what that
resource can do in a given context. The user of this
search techmique does not require an understanding of
the contents of the collection becanse the search method
is based on what the resource does in an application,
rather than oo how it fits into a collection of other
resources.

The method is useful & any stage of development,
Becanse the search is not built around the resources
themselves but around what they can do, a user may be 2
systems engineer unfamiliar with the specifics of the
software functionality capmred by the resources and
unfamilisr with software temminology used o describe
the anxibutes of the resource. ,
The facessd approsch is an example of retrieving
resources though information abomt what they do. A
facet is defined as a class of terms that characterizs one
way of looking at a resource. A complese facewd
classification of a collection of reusable resources
consists of several differens facets, each with its own lisi
of terms.

The SEI Application of Reussble Software
Compooents Project developed a faceted approach to
Asset Library Syseem (ALS), developed by GTE Labs to
support its facewed classification snd retrieval The
project establisbed a reuss collection comsisting of the
CAMP componsmts, ths GRACE Compooents from
EVB, and ths Booch WIZARD componsoes. Thess
components bave besn arranged into thres collections:

1. Missile operations
2. Kaiman filter and mathematical operations
3. Abstract data types and utilities
For each collection there is a separate set of facets and
lerms, specific 10 the components in that collection. For
example, in the missile operations collections, there are

the followiog facets:

1. Subsyvstem
2. Role

For esch compopent o this collection, there will be
one s=t of terms for eact! facet For the component
Compute_cast_velociry the ters are:

Term
Navigation
Operator
Wander-azimuth

Nominal esst & north velocites
Sins & cosine of wander angle

True east velocity
Sine-cosine

[

This method has the advantage of being very flexible
and easy t0 extend. If new components come into 2
collection, terms may be added to existing facets, if
necossary, to fully classify them. If a compietely new
collection of resources is added, than a new set of facets
is creawed, specifically for that collection. The
classification will then be doos with the new facets and
temms.

The method is most effective for a library of closely
this typs of collection, the facetsd method provides
excellent discrimination between similar componeots. If
a collection is diversified or more compiex software is
inoduced, ths facesed method becomes less effective.
required. Compilex software requires sumerous terms io
each facet for complews classification, making the terms
difficuit to use. Thess factors weigh against this method
for uss &t the requirements stage, when diversity of
functionality snd top level issuss am the concems in
asssmsing the spplication of reass.

S. Application-Based Retrieval

The spplication-based method uses information about
compietos systams 0 identify spproprisss resousces for
reuss on an applicsion. The method was developed by
the Common Ada Missile Packages (CAMP) program
for the parw identification subsysiem of the Ada Missile

169

Parts Engineering Expert (AMPEE) sysiem. Most of the
information needed to implement this method comes
from data captured during the domz in analysis that led to
This approach proceeds iry perallel with rmuse
avebmmmtm'mmmmg
in the astribute and faceted “pprosches.

Teere are two metds for performing application
based remieval. A system approach focuses oo
application featur™s or capabilities and retrieves
resources basei on the specific fesures of a given
spplication. The socond method works from a generic
mchitechre or model of software for the domain and
matches resources to the veszion of that architecrure as
customized for a specific spplication.

Becanse the application-based approach focuses on a
high-level view of the sysiem under development, the
technique is appropriate for the systems designer as weil
as the software designer and can be used eardy in the
resources. The next two subsections describe these two
approaches in terms of the information the user must
provide, the search strategy, and the data remrned to the
user.

5.1. System Approach :

The inwrfacs for the sysem approsch is &t the
sysiems level. Under the spproach, the unser provides
may include general requiremems, or specifics about
subsystems. The search strategy will judge the
means of wtilizing available resources in support of the
user’s requirements. The approach will retam to the user
the caalog atribuses of the resources that support his
requirements. If the requirements cannot be met directly
from the collection, the user will be offered suggestions
for use of the resources for pertial implementation of his
application. In addition the approach must report oo
inconsissencies in the user’s requirements.

The syssem approach provides the following featres:

INTERFACE Queries user about system requirements

PROCESS Validses requirements for consiswency
Considers zviilable resources and
possible alwmatives in partial support of
sllematives

PRODUCT Auribmes of availshie resources

supposting sysiem requirements

For each resource identified, the system approach can
agzin query the user, refining his requirements with
regard to that resowrce. The user is not asked to make
specific software design decisions, only to chamacierize
matching these requirements.

5.2. Software Architecture Approach

The software architecoe approach provides the user
with a graphic depiction of architectures for a class of
spplications. The ineerface allows the user w0 tailor the
geoeral architecturs to the specific architecture of the
system umnder development. This castomization involves
selection of subsystems and functions to support specific
software requirements.

The processing step must assess each tailoring step
and link that customization to the available reusabie
resources. As the user navigates e geperic
architecture, be will evenmally amive at specific
resources which msy be Ada components or other
reusabile software.

The mvchitecture method provides the following
features:

INTERFACE Generic architectures of typical

applications
User "builds™ custom architecture from
generic

PROCESS Considers possible alternatives at each
level of archiitecture
Links custom architecture to available
resources

PRODUCT Auribuses of available resources
supporting custom-built archisecrure

The next two subsections illustrase the application of
these (wo approsches ©0 the selection of CAMP
softwam.

53, AMPEE Missile Appiication Exploration
The AMPEE systsm contains a wids range of
functiosality and resources to sapport softwase retrieval.

170

checks
o caalog data base - controls part attributes
and searches on attributes

The system approach in AMPEE utilizes these
features in interacting with the user. The user enters
data about his system through menus. AMPEE uses this
daa in performing coosistency checks through the
knowiedge and rules base and in selecting appropriate
CAMP software from the catalog data base to implement
the feaures. The parts list is then passed to a catalog
function storing attributes of specific resources.

The following structure explains the manner in which

AMPEE impiements the system spproach.
mTERFACEMeu!:s query user about system
requirements
PROCESS Knowledge base supports consideration
of possibie alternatives
Rule base to validate for consistency
PRODUCT Pars list passed to catalog function to

retrieve attributes of available resources
SUppOTting user requirements
The AMPEE 100l retumns a parts list that leads to a
continiing dialogue with the user to refine his selection
of components.

5.4. AMPEE Missile Model Walkthrough

The Missile Model approach allows 2 user to build a
simplified version of his application from a standard
architecture. It provides a graph of architectures for the
spplication wrea that showing reusable software in
suppost of the implementation of high level fesmures.
Nodes on the graph will be the subsystems and functions
supportied by specific CAMP software. The user
traverses the graph, selecting nodes to customize the
architecture of his own spplication. The AMPEE system
accepes the identification of a node by supplying the next
level of the architecture. At the lowest level, the nodes
on the graph are individual resources of reusable
software. The features support by this method are:

INTERFACE Graphics depict a generic architecture
User walks through the architecture
mhdp bese provides data st esch

Links custom architecture to available
CAMP software

PROCESS

PRODUCT Dispiays anributes of availsbie resources

The user begins by identifying several of the
subsystems of his specific application from the generic
missile model. At successive levels of the architecture
the user can select more specific resources. The output
to the user is, once again, the attributes of the reusable
software stored in the catalog. The user may query these
as he proceeds through the graph or may accumulate
them to the end.

6. Summary
Management of a collection of reusable software

resources will pose challenges to those wishing to build
a large reuse library. The problems of building the
collection, describing it, and classifying it, must account
for the variety of resources that are available for reuse
and the differing requirements of users of the collection.
The methods for managing the collection, both in storing
and comrolling information, must, therefore be flexible
snd extensible. They must also consider not only
managing the resources, but aiso supporting the goals of
reuse-based sofiware development.

Methods for retrieving information about the
collection must also address these same goals. Users
the library at various points in the development life-
cycle Those unfamiliar with the structme of the
collection must still be given access to the resources, and
those who have knowledge of the contents of the
collection must be provided with powerful tools to
capitalize on their expertise. These goals ~an be
accomplished by providing methods that address both
what the resource is as well as what the Rsource does.
Integration of retrieval methods to support the attribute,
this required level of support for users of a reusable
software collection.

MANAGING LARGE REPOSITORIES FOR REUSE

April 10, 1989

Prepared by:
Beverly J. Kitaoka

Science Applications International Corporation
Tnnovative Technology Group
Science Technology & Software Operation
Ada Software Division
311 Park Place Boulevard, Suite 360
Clearwater, FL 34619

172

Science Applications International Corporation (SAIC) is in the process of
building and operating three significant Ada repositories for reuse:
Software Technology for Adaptable Reliable Systems (STARS), Air Force
Logistics Command (AFLC), and SAIC Corporate. While each repository has
distinctive needs, tha majority of the needs ars common. The STARS reposi-
tory serves as a testbed for repository and reuse technology. Distinctive
needs include a means for sharing program-related information such as
meeting minutes, presentations, Contract Data Requirement Lists (CDRLs),
and peer reviews. The AFLC Ada software repository has been established to
provide a means of sharing information among the software development and
maintenance personnel at the Air Logistics Commands. With the wide variecy
of domain-specific software developed at SAIC, the company has decided to
institute a reuse program to enhance the quality of the domain software and
encourage cross-domain reuss.

The primary source for repository technology has been, and will continue to
be, derived from the STARS program. This paper will describe the
experiences and challenges of creating and operating useful repositories
with this tachnology.

The major repository issues have been divided into four categories: content
acquisition/update, technical information services, facilities, and opera-
tional support. Content acquisition/update includes classification,
evaluation, and cataloging; technical information services include supply,
reuse, logistics, and forums; facilities issues include platform, equip-
ment, and communications; and operational support issues include access,
usage monitoring, tool installation/customization, machine operation, and
configuration manageaent.

Content Acquisition/Updace

We decided to establish these repositories by collecting all the Ada
software we could get our hands on. While the objective is to provide a
repository of certifiably reliable components, we determined that first we
would need to learn how to make certifisble components (through creation or
adaptation). Ve felt that the process of evaluating a large collection of
software would teach us a lot about the characteristics of software, the
classification of software, and the adaptation of software for reuse. This
initial repository state has been designated a "depository (junkyard)" by
the IBM Houston STARS team. The Houston team has defined « spectrum of
repository classes vwhich 1includes: depository, filtered, organized,
managed, and certified. If one considers a repository to be a collection of
software work products and their supporting information, it is possible to
consider a repository of repositories in which collections can be in the
various stages mentionsd above.

Vith this in mind, we creatsd depositories of the following software
collections for the STARS, AFLC, and SAIC repositories: ALS, ASR/SIMTEL20,
CAMP, IDA Ada/DIANA Front End, IDA Ada/SQL Binding, NOSC/VWIS, SDME, and
UNITREP. In sddition to these collections, the STARS repository contains
STARS Foundation and STARS Prime software, the SAIC repository contains SAIC
proprietary software, and the AFLC repository will contain software specific

.1.

173

to the Air Force. We are in the process of obtaining AFATDS, U.S. Army/
CECOM, McDonnell Douglas and Ada SAGE, U.S. Marine Corps and determining
how to make the STARS software available to organizations not affiliated
with the STARS program.

The initial IBM STARS repository used the VAX/VMS directory structure to
organize the code by program source, using subdirectories that paralleled
those used by the distributing agency. Simple directory keyword and source
text searching capabilities were implemented using VMS utilities. This
approach provided minimal organization to the repository while the contents
were analyzed for key characteristics and reuse potential.

As our next step in organizing the repository contents, we chose a hier-
archical, relational data wmodel implementad on Oracle, a widely used
commercial Database Management System. Oracle runs on several platforms,
including the PC, which will be useful in implementing the shadow reposi-
tories and project libraries. We chose the hierarchical approach because we
felt it would be easy to implement. Our next goal is to implement a facetad
data model. The faceted approach offers higher extensibility, flexibility,
precision, and succinctness over the hierarchical model. Since this
approach has been successfully implemented on small, domain-specific
libraries, we have decided to enlist the efforts of experienced individuals
to assist with the transition of a large collection of diverse software from
a hierarchical to faceted model. We will retain the source directory and
hierarchical approaches as alternatives to the faceted model. Implementa-
tion of the hierarchical model will provide comparison data for the facetad
model on this type of repository.

To "organize® this large collection of software, we have constructed
guidelines for software engineers to evaluate the contents of the reposi-
tory. These guidelines include a copy of the baseline data model;
descriptions/explanations of the database tables and potentially obscure
items; a master cemplate (electronic) for entering the characteristics of
the product under evaluation into the database; a description of reuse
categories; usaer manuals for tools which provide further information about
the product, such as lines of code; reuse definitions and guidelines; sample
product reviews; type lists; and ownership categories. The goal of the
evaluation effort is to learn as much about a given product as possible for
classification and reuse potential. This {nformation will be useful in
transitioning from a hierarchical to faceted data model and providing
information for repository users. We intend to use these guidelines to
process new respository acquisitions and updztes.

The evaluations will help us "filter" the repository by providing informa-
tion on redundancy, outdated versions, incomplete or nonworking software,
and form and content cousistency.

We have created a tool which will generats a catalog entry for each product
in the database using the data entered via the template and generatad by the
evaluation support tools. This catalog tool will allow us to generate an
up-to-date copy of the repository catalog vhenever new products are
acquired.

174

Part of the classification effort for the AFLC repository required domain
analysis for two selected domains: onboard flight programs and flight
simulation software. Ve determined that the classification scheme, or
taxonomy, was dependent on the domain analysis and, therefore, a product of
the domain analysis. This determination was reinforced by discussions with
Ruben Prieto-Diaz and litarature searches. An incomplets domain analysis
hindered the process of locating potential reuse candidates for classifica-
tion under the domain, requiring further domain investigation and
reclassification of domain-specific components.

Objectives of the next STARS increment include guidelines for creating
"managed” and "certified" repositories. We will apply these guidelines to
the STARS repository as they become available.

Technical Information Sexvices

Technical information services support the repository users. These services
may currently be invoked from screen menus and database queries. We are
axploring other interfaces such as Natural Language Interfaces, Hypertext,
and the use of Graphics as alternatives to the menu and structured command
approach.

The process of a user supplying a work product to the repository is similar
to the content acquisition/update process described above, only the supplier
will provide the classification and database i{nformation instead of the
repository personnel. Guidelines and templates for entering this data will
be supplied to the user. The repository personnel will then evaluate the
software and load the database. This process will be tested in the next
STARS increment as STARS work products ares created.

In the first STARS increment, tools were selected from the repository to add
capabilities to the STARS software engineering environment under develop-
ment. Interface standards, "Virtual Interfaces," were created for the
environment. The objective was to remove the existing tool interfaces,
replace them with the Virtual Intsrfaces, replace any code with existing
reusable components where possible, and create new reusable components from
code contained in the tool. This turned out to be a more productive
exercise than we first realized. The reuse of the Virtual Interfaces and
components produced a largs amount of working code in a small amount of
time. We faced performance problems in some areas by reusing components
vhich were too general for the application; we had to deal with components
vhich wvere not at the right level of abstraction, carrying unnecessary
baggage into the application; we had to deal with the necessity of varia-
tions for different application platforns; and we had to deal with some
reuse management probleas.

Reuse management problems included the construction of nevy code because the
softwvares engineer wvas unavare of the existence of a particular reusable
component. This wvas primarily a problem with the initial directory
classification structurs. The immediate fix for this problem was to
emphasize reuse in the design reviews - the problem was discovered during

175

the code reviews. Another problem discovered involved adaptive reuse of a
component. In modifying a component for use in a schedule-critical applica-
tion, the software engineers did not pay attention to making the adaptations
rausable and returning them to the repository as resusable component varia-
tions. The impact was discovered when the same changes were needed for
another application, and the component had to be extracted from its now
application-specific environment and modified again for general reuse. The
fix was to stress rsusability as well as reuse.

Repository tools which we have creatad from salvaged repository software
includas: browser, annotation editor, pretty printer, standards checker,
profiler, compile orderer, cocomo, SGML processor, catalog generator, and
evaluation generator.

Ve are in the process of incorporating our reuse guidelines with our
software development and quality assurance standards and procedures.

Logistics, the process of getting the right product to the right place in
the proper form, will be part of the next STARS increment work.

To increase communications among repository users, forums have been created
using the VAX/VMS NOTES product. This capability allows users to enter
information on a given topic and solicit responses. It has proven useful in
locating solutions to problems raised by the STARS team members.

Eacilicies

To provide a useful repository, the facilities must support the required
repository capabilities which include evaluating, certifying, and storing
the contents. The current IBM STARS repository contains 1.7 million lines
of Ada statements requiring 214 megabytes of memory. The total size of the
repository is 367 megabytes.

The platform selected for these repositories is a VAX 3600 running the VMS
operating system. This platform was selected for the SAIC and AFLC reposi-
tories primarily because the equipment was already in use by each organiza-
tion. It was selectsd for the STARS repository because of the wide usage of
the VAX platform among the STARS participants and the modular expansion of
resources available by clustering the VAX computers. The VAX/VMS platform
also provides sufficient Ada support so compilation can be part of the
evaluation process.

The significant number of software and hardware vendor offerings for the
VAX/VMS platform provides a basis for rapid-prototyping repository capa-
bilities. Commercial off-the-shelf products can be used on a trial or
purchase basis to determine the requirements for repository operation and
usage capabilities. These requirements can then be used for maks/duy
decisions based on current and future considerations. Future considerations
may impose performance requirements across distributed, heterogeneous
platforms, for example.

4.

176

Equipment for the repository includes 32 megabytes of physical uemory,
approximately 2.4 gigabytes of disk storage (four DEC RA82 drives), a
cartridge tape drive (DEC TK70), and a multi-density tape drive (DEC TUSL).
Of the four physical drives, one 1is allocated as the system disk, one is
allocated as user disk space, and the other two are bound as one logical
disk volume (ADASREPOSITORY) where the repository contents resids. An
optical disk capability will soon be added to increase the variety of
physical media distribution. Access to the IBM STARS repository is pri-
marily via dial-up modems into the SAIC terminal server with automatic
connection to the repository VAX. There are currently eighteen telephone
lines organized in a rotary group. Sixteen of the eighteen lines are
connected to 2400-bps modems equipped with MNP Lavel 5 error correction and
compression. The last two lines are connected to 9600-bps modems equipped
with MNP Lavel 6 error correction and compression., The ninetaenth line
serves a dual purpose, as a trouble line and for modem testing, and {s not
in the rotary group. A network bridge comnecting the SAIC Clearwater Local
Area Network (LAN) and the IBM Gaithersburg LAN has been installed to
improve communications bestween the two IBM STARS teams. Efforts are being
made to obtain a dedicated ARPANet node.

Ultimate repository platforms will probably include distributed hetero-
geneous computers - allowing optimal performance for a given capability.
UNIX platforms, including the new IBM platforms supporting AIX and the BiiN
computsr, are being studied for this purpose.

Qperacional Support

Operational support capabilities include providing user access, monitoring
usage, installing and customizing tools, operating the machines, and
perrorming configuration management.

At this time, only STARS affiliates can access the STARS repository, and
only SAIC employees can access the SAIC Corporate reposicory. Ve ars
currently working on methods to resolve this access restriction. Access to
the AFLC repository is in the process of being established. Usage
monitoring will provide information on who uses the repository and how they
use it. This information will give us insight to problems with repository
support and assist in the definition of nev requirements. The absence of
hits for database queries will provide demand information which will be used
to identify the need for specific reusable components.

Configuration Management guidelines have bean daveloped using the VAX/WMS
CMS product. These guidelines will be improved in the next STARS increment.

SAIC will continue the work of enhancing these repositories while exploring
variations of the repository, such as shadow repositories and project
libraries. The STARS program has been a valuable means for developing the
technology applied to these repositories.

177

POSITION PAPER
REUSE IN PRACTICE

Aerospace Distributed Software Library

Williarm Novak

GE Resident Affiliate
Software Engineering Institute
Camegie Mellon University
Pitusburgh, PA 15213
NET: wen@sei.cmu.edu

1. Background & Motivation

L1, Introduction

Virtually every programmer maintains 2a
personal library of reusable code and uses it
regulardy in developing new software. Often some
of the most effective software developers are those
who have at their disposal a large personal
collection of previously developed software that
they can apply to new problems. The difficulty is
that no other programmer knows enough about the
contents of that personal library to be able to use it
as well. As a result, time is wasted developing
independently something that could be done better
and faster by working together.

1.2. Task Description

In response to this situation GE Aerospace has
developed an automated system for the
classification, storage, search, and retrieval of
reusable software. The Aerospace Distributed
Software Library, or ADSL (formerly known as
RARS), currently provides automatic GE DECnet
retrieval of over one thousand modules written in
Ada, FORTRAN, C, and other languages which
have been catalogued from GE, public domain,
and commercial sources. The ADSL offers such
search techniques as taxonomy-based (using a
hierarchical classification structure), keyword, and
text search, with various search constraints
available to limit searches based on different
properties of the software.

The ADSL has been implemented using the
INGRES relational database with Standard Query

178

Language (SQL) and runs under the VAX/VMS
operating system. The library units themselves
exist as VAX files that are distributed on various
nodes across the GE DECnet network, and the
system zutomatically retrieves the units selected
by the user with a background job at the end of the
ADSL session. This arrangement keeps the
amount of disk space required for storing the
Library software at any particular node to a

1.3. Purpose
The purpose of the ADSL development is to

create a distributed library of reusable software
across all of GE Acrospace using this system to
catalogue and retrieve the library units. The
ADSL supports not only several different search
techniques, but an extensive Library Maintenance
application that allows all aspects of the system to
be maintained, so that the different ADSL sites
may be managed independently.

The current contents of the ADSL have been
taken from many sources, but represent only the
smallest beginnings of what the Library will
contain. In 1987 bundreds of Ada components
were taken from the public domain SIMTEL-20
Ada Software Repository to establish an initial set
of Library units for testing. In 1988 two additional
reusable software libraries have been added: 1)
the Booch components library, 500 different data
structure packages written in Ada by Grady
Booch, and 2) the Ada generic components library
developed at Corporate Research and
Development in Schenectady. Software of any
type may be catalogued in the system-— there are

Reuse in Practice

no restricions on type, application,
implementation language, or even quality— but all
of these attributes are recorded in the Library
catalogue entry, so that if a user is interested in
software that is, for example, written in Ada and
that has passed acceptance-level testing, then only
the software units meeting those constraints will
be seen.

2. Aerospace Distributed Software
Library

2.1. System Services
The system currently offers four primary
options to the user:

1. Search for and retrieval of software
units from the library

2.Review of current library metrics
data

3. Viewing of recent library news items
and user comments

4. Maintenance of the library catalogue
data

2.2. Search

The Search option is the one of most interest to
the general user. Users may search for software
using the hierarchical software classification
taxonomy, keyword searches, or text searches.
Multiple taxonomies for different software
development domains exist side by side, and
software units may be catalogued in several
different taxonomies and/or taxonomy classes if
needed. The user may browse up and down
through software taxonomy classes that become
increasingly specific, or specify a class of interest
and move directly to that class. An extensible
thesaurus will accept common abbreviations and
transiate them into keywords or full class names.

To limit the search, users may specify certain
search constraints to retrieve (for example) only
software that runs on a specific operating system.
All searches may be constrained by the computer
the software runs on, the operating system it runs
under, the implementation language it is written
in, the amount of testing it has passed, and the date
it was catalogued into the library. Another type of

search constraint which is available allows for
distinguishing between reusable components
which are identical in their basic function, such as
a set of many "stack” packages which are
implemented in different ways, They may differ in
the ways they handle concurrency or memory
management, and the system allows the search to
be constrained according to these attributes.

All units that are found using any search method
will be displayed to the user and upon request, the
code and associated documentation will be
retrieved into the user’s current default directory.

2.3. Metrics

The Merrics option is used to view varivus
statistics and metrics that have been collected on
overall library usage. Metrics may be viewed by
library unit, site, or individual library user. Metrics
are gathered on the number of library users, the
number of library units, the number of retrievals
by sites or users and the average frequency of
retricval of any given unit, plus various other
metrics.

2.4. News and Information

The News and Information facility allows the
user to view information on recent acquisitions to
and enhancements of the library. It also allows
users to view and edit lengthy comments about the
performance of individual library units.

2.5. Library Support

Finally, a separate facility, Library
Maintenance, exists for the cataloguing of new
Library units and the maintenance of various other
Library information. This facility is used by the
Library Administrator and can define
classification taxonomies, delete library units, and
modify unit descriptive information.

3. Conclusion

The fact is that there are still no commercially
available systems that fully support software reuse
and are suited to the distributed GE environment.
The existence of a sophisticated software retrieval
system within GE Aerospace is critical to

179

Reuse in Practice

answering the increasing demands for improved
productivity. The current ADSL system provides
a practical, efficient, and sophisticated software
retrieval sysiem that is being put into place at GE
Aecrospace sites now, and will be able to grow
along with GE’s requirements for software reuse.

180

e Position Paper
for

Reuse in Practice

Workshop

11-13 July 1989

Constance Paimer
McDonnell Douglas Missile Systems Company
Dept. E434, Mail Code 0922232 ‘
P.O. Box 516
St. Louis, Missouri 63166
(314) 925-7930

181

Reuse in Practics 8 April 1989
REUSE IN PRACTICE

There has been talk of software reuse for many years, yet in reality the full potential has yet to be reached. In the past several
years, as software costs have sky-rocketed, there has been an increased focus on rense as a means of controlling or reducing

those costs, and as a means of producing a higher quality product.

Some domains have been more successful than others at applying reuse technology. For example, the Japanese have been
very successful in some banking and telecommunications areas, and companies in the U.S. have success w.th other
buziness i mmmumwmmmm (R‘l'E)q:p:dadomwl—
developers of these ications are particularly constrained in terms o space and timing i generally
have very stringent reliability requirements. 'Mhhm(aﬂﬁnh)amﬂdmmmmpof
developers about the viability of software reuse in their applications.

The Common Ada Missile Packages (CAMP) program (being performed by the McDonneil Douglas Missile Systems
Company, and sponsored by the Air Force Armament Laboratory at Bglin Air Force Base) is aimed at addressing the issues
of software reuse in an RTE domain The author hag been involved in the CAMP program since it began in 1984, and thus,
the perspective on reuse presented here is in terms of reuse of Ada in RTE applications. Phase | of the CAMP program
(referred to ag CAMP-1) was a feasibility study. The primary objectives were to determine if sufficient commonality existed
within the missile operational flight software domain t0 warrant the development of reusable software parts, and if
commonality was found, to identify and specify the parts. The feasibility of antomating aspects of parts engineering was also
explored, and the requirements and top-level design for a parts comgpcsition system were developed. During Phase 2
(CAMP-2), the purts were coded and tested, a3 was the parts composition system (PCS). Both the parts and the PCS were
used in the so-called "11th Missile Application”. Additionally, a set of armonics (armament electronics) benchmarks was
developed. The 11th Missile Application was a demonstration program that involved the use of both the reusable Ada parts
and the parts composition system in the development of a realistic application. Phase 3 (CAMP-3) is currently underway.
The main tasks are maintenance and enhancement of the CAMP Ada parts, re-engineering the prototype PCS catalog
fonction in Ada, and development of a manual on "Developing and Using Ada Parts in Real-Time Embedded Applications”.

1. TERMINOLOGY

As in most developing technology areas, there is no clear consensus on the definition of terms in the software reuse area, thus
itisi for authors and speakers to define what they mean. It may as yet be too early to standardize on a complete

, but one’s perspective should be clarified for the audience. Over time, as reuse becomes more widespread, a
common set of definitions will emerge from the reuse community,

1t is difficult to come up with one set of definitions because domain and scope impact the meaning/interpretation of different
terms. For instance, effici requirements within a payroll system and efficiency requirements within missile operational
software may be orders of magnitude different, yet developers of both may discuss "efficiency” and assume that their
meaning is clear. There is, of course, some overlap in definitions, but it is best that they be clarified to prevemt
isnnd i

2. REPOSITORIES

A repository is an essential aspect of a viable software reuse methodology. It is a central facility for storing information
shout available software parts, and may. in fact, contain the parts themselves. A significant amount of work has been dooe in
this ares, and a number of altemative structures and parts attribute sets have been proposed and developed. Because reuse is
and will be practiced & many different organizational levels (e.g., project, company, corporate, industry, domain, etc.), no
oue structure will suffice for all instantiations of a parts repository.

(1) Scope

One of the most important preliminary parameters that needs to be defined before a meaningful discussion of repositories can
ensue is that of scope. Scope will impact the features of the repository that are affected by user diversity, which, of course.
increases as the scope is broadened. Scope will affect features such as the type of user interface that will be needed (user
interfaces are an important consideration in repository development. particularly as software engineers become more
accustomed to multi-window graphical interfaces in their other software engineering tools), security requirements and access
coatrol, accessibility, robustness requirements, and domain covered by the repository.

Scope affects support needs as weil. For example, a repository that is intended for use by a project or company, may need
just a librarian to verify that coding and documentation standards have been met before a part is added to the repository.
Other cursory checks could include checking for test documentation and results. A iarge-scale, community-wide, or even

C. Palmer |

182

8 April 1989

corporate-wide, library migit require a significant staff to not only check code and documentation for compliance with
standards, but also perform independent testing, assess the value of parts, assist users in the use of parts (throughout the
lifecycie), develop new parts, provide training, etc..

As the scope broadens, the need for and demands on 2 repository support staff grow. It is envisioned that such a staff could
be invaluable in the technology and cultural transition from custom code development to widespread software reuse. They

MWMMMWWmWMmWMMmMQaWWw

%

parts, maintenance and enhancement of existing and user support may become significant. 1f the repesitory is for
isxi i govemment fund it, or should the contractors contribute to its
Shﬂdy.ﬁmmkcmgmewﬂe.mudnmmmfmmwwtbmmwm

Es
i
|
j
b |

i
5-.;
i
]
i
|

:
]

wedevdopeda composition System that had a catalog as its comerstone. During
wandp':mwm:wmogm but, the prototype CAMP
wuacopedpn‘maﬁlyfot oreompmyme(hbvmwnhﬂuCAMPJWMa-hmdamlog). It
i i ithi ion (although there are coafiguration

i3
i
ill
i
oy
iy
fis
i

(2) Classification
Several issues related to classification arise in the discussion of repositories. For instance,

. entity is to be cataloged? In the prototype CAMP-2 catalog, we had separate catalog entries for Ada specs
and bodies, as well as for structuring packages, bundles, etc.. As a resuit, the CAMP-2 catalog had over 1100
entries, aithough there were only 454 CAMP Ada parts developed. This classification scheme was problematic
for the potential reuser — there were just too many eotities. The user could not easily find what be was looking
for. This directly coatradicts the purpose of a catalog which is to (amoag other things) lower the cost of reuse by
facilitating the acquisition of information about available parts. Others have raised the issue of whether entities
such as documentation, design, or test code should be cataloged separately from the software parts themseives.

e How are entities categorized? During the CAMP program we were looking at a specific domain — operational
missile fligin software— thus, we developed a functional decomposition of the software (see Figure). The

advantage of this categorization scheme was that it was easy to impiement, although it suffers from the
disadvantage that is not very flexible or extensibie,

[

| | 1 |
L JwnnaToN _sssmvcr L | —asermc
OATA STRUC ATMETER OATA TYPER
DR, COR - =GATEFRMNION
| = ASETRACT —OATA BUB OATA
KAMAN RLTER ROCE NTEwACE e =T CONVIRION
- GLEDANOE & ool Laoex e JALMAN FLTER = IGNAL PROCEBEING
CONTROL COMIRCL MO DATA TYPED
km - COMMUMCATION - WasTe
WVPONT —COOMD. VICTAMAT
-GNV =LAV AGER
— NON-GLDANCE ynuTY CONSTANTS
CONTROL f=-GENIRAL VECTAMT
L~ CONVERIION NGB
AR DATA CONSTANTS
- QENEW. RAPOSE
MATH
—POLYNOMALS

Figure 1: CAMP Parts Taxonomy

Cmundy.theCAMPpamanlogubemgm—enmmd to make it more widely usable. Although the catalog we deliver
will be set up for the CAMP parts, containing the CAMP parts taxonomy, etc., a site will be abie to establish a different
i ir environment. The taxonomy will also be modifiabie, so that for example, if a

may want the CAMP parts taxonomy, but if they acquire another set of pans

C. Palmer 2

183

RegeigPracice = 8 April 1989

for a different domain, they will want a taxonomy for those parts as well. The new CAMP catalog will be able to bandle this
situation and accommodate both taxonomies.

(3) Domain

Domain specificity depends on the breadth of definition of the domain and the number of 1f the domain of a catalog is
mm,mmyhvetommunmlemlopmotdnmobtmauofmepm ormation that they need in order to
develop their jon. It is difficult to establish clear cut boundaries between some domains — some domains have
duiﬂcaa (e.g., ammonics and avionics). It is better to provide a structuring mechanism within the catalog than to

segregae the dommmny(i.e..meﬂngmmmsepamwalog:)

3. MANAGEMENT ISSUES

There are a number of management issues that need to be explored when impiementing a software reuse program within an
orgapization. A few of them are discussed here.

(1) Management Support
Management support for software reuse is critical to its success. Organizations need to realize two things.

¢ They can develop a competitive advantage by developing and using reusable software in their product lines
(given that commonality exists and can be developed in a reasonably cost-effective manner).

¢ The industry as a whole can produce bigher quality products if the industry as a whole develops and uses
software parts.

Once this realization comes, it is not clear that the DoD will need to provide incentives to the industry to practice reuse — the
organizations will see that reuse is in their best interests. In the interim, it may be pecessary for the DoD to provide
incentives because of the increased cost of developing reusable software and the increased risk of incorporating it into new
applications. The risk will diminish over time as the technology and methodologies emerge and mature.

The conversion to a parts-based approach to software development will require cultural changes as well as technology

Soﬁwmmﬁmmmmmylmmwmmeymmghm&mm As Jean Sammet pointed

out in Reference [4], "Ever since the second square root routine was written, the programming fleld has lost adequate
control of reusability.”

Meﬁonm:ohdqhghqumme&mkWamMuﬂmMamaﬁenboughtmme

ovenil system development. Once the investment is made, the development costs can be amortized by reusing the software
in additional applications. These are attitudes that are not currently prevalent.

Management needs to have confidence that when they are asked to sign up to software reuse in their projects, that they bave 2
reasonable chance of success. Once they are convinced of the vajue of software reuse, they need to be willing to make the
mmmgmmmm:mm%gewmﬂofmmbkwm Theyneeg';obe
willing to develop a support group can assist projects muontogmbledappliaﬂondenlopmem jects
WWMMMWMMhMM embrace a technology that is still somewhat
d:kybmofmaﬂympofdenlm Management needs to be willing to share the risk with these projects.

(2) Test-bed Programs

Confidence in software reuse techoology and methodologies can only be gained from success stories. Paper studies and “toy”
will oot suffice for the peopie who bave hard schedules and requirements constraints. Realistic test
mammm the type of test environment for software reuse that can work out many of the issues
associsted with it, and demonstrate that it is viable, cost-effective, and uitimately beneficial. The DoD can

the move to software reuse by funding these types of demonstration projects.

This was one of the benefits of the CAMP-2 11th Missile application. The 1 1th Missile wag so-called because it was not one
of the original ten missile software systems that was examined during the CAMP domain analysis. The goal of this effon
was 0 validste the concept of parts use in real-time embedded applications. The 1lth Missile application entailed the
redeveiopment of mic-ile guidance and navigstion subsvstems in Adn. using the CAMP parts. This etlon wax based on an
m;mmm“wmxovw It required the devel of a DoD-Std-2167 SRS and other

documentation, as well as software development and hardware-in-the-loop ()mnng. It was targeted at 2 1750A
processor. The existence of the HIL test eavironment made this an attractive application to parallel.

C. Palmer k)
184

Reuse ip Practice _ 3 April 1989

The development effort demonstrated that Ada was rich enough to allow implementation of virtually ail of the required
M(&eﬂmmmmyzuhaofmbl«m»mmmgmm)m
could be incorporated into a new RTE development effort. The 1lth Missile
effort also highlighted dnnsbmledmthdnapplmmofmmﬂnddopa(ie.,aoﬁwmmm
m;ﬂiﬂml Although the 1750A-targeted Ada compiler was validated, it was unabie to correctly compile many of the
generics (many of which are quite com in structure). In fact, several compilers were tried. Tbe lems
encountered and the resuits obtained during the 11th Missile application development effort are detailed in the -2 final
technical report (see Reference [2]).

umum;mmmmwemmmmmmmmm Many of
the generics had to be manually instantiated. tasking overhead was prohibitive. The compiler was not able to generate
object code that was efficient enough for the navigation subsystem to run in real time. Numerous lesser bugs were also
encountered with the compiler.

MMdMeHmummmthdmmwhndmmmmmum?ﬂﬁvm

spurred compiler improvements that will benefit ail fdnamgnh This the importance of establishin
u—bedmhmmupmﬁmmﬁn]::sx:am ngmmgga s

(3) Return om Investment

It is too eady to determine exactly when the payoff will occur in parts reuse. Although there will be gains during
development — meﬂmmwm&ummmﬂm&mﬁmm we must also
look to the maintenance phase m?m“wmmdm ty in the products because of the use of
mvdymsoﬁwm gh there is some data available in commercial business-type applications, there is
notyasnﬁnendanavuhbbforkmqpﬁmomtommammddmngofmepuyoﬂ'forwhwmpm
reuse.

We need to explore ways to maximize reuse and reduce the cost of reuse. This can be accomplished through training and
ﬂmgbhmm&goymoftmkmamngwbmdwmmwﬁwmdewlm Some of
m“mmwmmm prototype development of a set of integrated facilities
to support software development with parts (see {1, 3.

4. DOMAIN ANALYSIS

mmummdawwmofwmmmagmdommwnhﬂnumot‘demmnmngtm
common objects, operations, and structures (if they exist). Domain analysis requires first that the domain be defined. It is
mdwmambmmdeﬁmwwmmmmbecomadmddnﬁngadanunualym—dmm
ofien overdap. Domain amalysis is tedious and time-consuming, requiring the examination of existing software
documentation and source code, as well as further work with the original developers if they are still available. It provides an
investigative challenge. The existence of commonality within a domain cannot be taken for granted. The main outputs from
a domain analysis are (1) the identification of common objects, operations, and structures, and (2) the domain modei.

Domain analyses provide the foundation upon which to build a software parts development effort, but the development of

nimelhodsfor them is still in the early stages. CAMP-1 began with a domain analysis that involved

flight software from a set of ten missiles. Hmﬂnsmly&nﬂemﬁedmmmlyzso

Jﬁaﬂdﬂelopda taxooomy with which to categorize))m ‘We assumed (and were proved correct) that

o, mmmmnmmdﬂdmo common partg. Our final part count at the end
CAMP- was

There are a8 yet no widely accepsed or established techniques for performing a domain analysis, but a number of issues have
been identified. One factor that is critical is the selection of an adequate domain representation set upon which to base the
amalysis. Practical coostraints llnmhuionolall ons within a domain, thus, it is important that the

qhsamm truly representative of the domain as it has been defined.

S. IMPLEMENTATION ISSUES

Because the CAMP domain was missile operational flight snftware. we wcre very concerned with efficiency of the parts that
vedeveloped. ‘We had to balance our goals of efficiency. usability. and flexibility when implementing the pants. Although

the code to be as cfficient as possible, we recognized that we might not mec: the needs of all users, but feii that
huduunﬂwhbymﬂngoodemuuqmonlysli "tweaking” to meet his requirements. In many cases the code
will meet the user’s requirements without agy modification. Reuse is not an all or nothing proposition.

C. Palmer 4

185

Reyse ip Practice 8 April 1989

Weﬂnmvﬂdmmﬁahmnn&mmmmhmmmdiﬂememcgnqmmnm For
we provided a number of alternative matrix representations. If a user was relasively unconcerned with efficiency,
bmﬂmhp&hpmwm-mgmumwmmmxﬂnmmmthspaeeuulizanmhe
might want to use an altemnative, special-purpose representation such as a coordinate matrix (if he knew he was working with
coordinates). We also provided trigonometric functions with various degrees of speed and accuracy to accommodate
different project needs.

Opdmmgmpﬂmmmﬂrod:epmducuonofob)eacodedm'mmeenheefﬂctencyteqmmotmal-nme
The CAMP 11th Missile deveiopment team provided significant feedback to the compiler developer

bwmﬁmofnmaaﬂyopmmdmm

for use with reusable software will need to be able to remove unused .ode within packages. Many times a
will contain more than just the routines of interest to the application deveioper, and these must be eliminated in order
to not unduly burden the user.

mmofnﬁwmﬁmmmmneednotmplythﬂdmeuaseamtynsk.aanskofmodmgamto
one’s operating environment. This is not generally a concern when using commercial software. Application developers need
mhabbmhnhanelwdofmﬁdmmmbhwﬂwmmppmamhancmmﬂvendo:s This
is one reason why it is important that software parts be "validated™ prior to making them availabie in a catalog or repository.
Parts repositories should provide a means for logging user feedback about individual parts; these comments can then be used
by subsequent users in their evaluation of parts for their projects, and contribute to the confidence level a user can have in the

comrect operation of the parts.

6. ISSUES

There are many issues associated with software reuse that have not been addressed in this paper. A few of them are
enumerated below.

® At what level should reuse take place (i.e., what should be reused?)? Code? Design? Requirements? Ada

specifications are often equated to top-level design and bodies equated to detailed design, so with this point of
view, designs do get reused in Ada applications.

* What is the best architecture for use in the development of recsable software parts?
o What type of training is needed to give software engineers the skills to both develop and use reusable software?

* What time borizon should we be looking at for the technology needed to support software reuse? Are we
looking at what can be accomplished now and in the near-term or what can be accomplished in ten years?

* What will the impact of reuse be of data rights and other legal issues?

7. ABOUT THE AUTHOR

186

Reuge in Practice : 8 April 1989

References

-

1. McNicholl, D.G., C. Palmer, et al. Common Ada Missile Packages (CAMP), Volume IT: Software Parts Composition
Study Resuits. Tech. Rept. AFATL-TR-85-93, Air Force Armament Laboratory, Air Force Systems Command, United
States Air Force, Bglin, Air Force Base, Florida, 32542, May, 1986. (Must be acquired from DTIC using access oumber
B102658. Disibution limited to DoD and DoD contractors only.).

2. McNicholl, D.G., C. Palmer, J. Mason, et al. Common Ada Missile Packages - Phase 2 (CAMP-2), Volume II: 11th
Missile Demonstration. Tech. Rept. AFATL-TR-88-62, Air Force Armament Laboratory, Air Force Systems Command,
United States Air Force, Eglin, Air Force Base, Florida, 32542, November, 1988, (Distribution limited to DoD and DoD
contractors oaly.).

3. McNicholl, D.G., S. Cohen, C. Palmer, et al. Common Ada Missile Packages - Phase 2 (CAMP-2), Volume 1: CAMP
Parts and Pars Composition System. Tech. Rept. AFATL-TR-88-62, Air Force Armament Laboratory, Air Force Systems
Command, United Stases Air Force, Eglin, Air Force Base, Florida, 32542, November, 1988. (Distribution limited to DoD
and DoD contractors only.).

4, Sammet, Jean E. "Why Ada is Not Just Another Programming Laoguage”. Communications of the ACM Vol. 29, No. 8
(Aungust 1986).

C. Paimer

187

The Reusability Library Framework -
Working Toward An Organon

James Solderitsch

Unssys Defense Systems
Paoli Research Center
PO Boz 517
Paols, PA 19031-0517

Internet: jjs@pre.unisys.com
UUCP: {sderdef,bpa,psuvaxl}!burdvax!jjs
Phone: 215-848-7378

Introduction

This paper describes work-in-progress that began under the STARS Foundations
program with a contract administered by the Naval Research Laboratory (contract
number N00014-88-C-2052). Current plans call for work to be continued on the
Reusability Library Framework itself and on using the framework to support the
construction of library systems at various levels. In addition, Unisys plans on exploring
other applications areas which can benefit from the use of knowledge-based techniques
implemented in systems designed and engineered from an Ada perspective.

This work has been reported on at a number of previous conferences
[Solderitsch88] [(Wallnau88] [Solderitsch89]. This paper will present a summary of this
material and then outline plans for future development. In doing so, the paper will
address some of the key issues affecting reuse technology, and the RLF approach to
some of these issues. A workshop atmosphere will enable others to evaluate and critique
the RLF work in & manner that is not possible during actual conferences and through
private correspondence. In this way, the RLF technology can both influence, and be
influenced by, developments that are underway acroes the spectrum of reuse-oriented
projects and investigations.

RLF Approach

Ada development efforts during the 1980’s have succeeded in producing an
increasingly large collection of Ada components. Individual collections range from the
general purpose (Ada Simtel repository, EVB-Grace commercial parts) tc more narrow,
application-specific collections (CAMP parts [CAMPSS]). In any case, eflective ways
and means of collection management are required in order to vake advantage of them.
At the very least, support must be provided for retrieval, insertion and qualification of
components in the context of a supportive library or repository management system.

188

Pactttoem B .- = " Praetics Workshop 3

Various classification schemes have been proposed [Prieto-Dias87a] but fixed
classification schemes can be unnecessarily limiting. An approach that permits a
library organisation to evolve along with the components being kept in the library is
better able to support software collections as they change both in sise and maturity.
Moreover an adaptable library organisation is better able to serve the needs of focused
application domains. Important semantic attributes of software artifacts are often
dependent on the domains to which that they belong. As such, library support software
must be semantically tailorable to represent and use such attributes.

The RLF technological approach is founded on the premise given in the preceding
paragraph. Broad objectives of the RLF project include:

o develop knowledge-based interfaces to repository (object) management systems;

o investigate the mapping between application domain and reuse technology (part
selection, part composition, part generation);

e go beyond supporting retrieval of static parts to include program generation,
system/software configuration, system/software testing and even system/software
design and requirements analysis;

o support the basic integration of reuse technologies (knowledge-based and
generation techniques); and,

e perform some applied research in domain analysis.

On » smaller, near-term, scale, the RLF aims to:

e develop foundations technology essential for building "intelligeat libraries™ for
reusable software components within specific application domains; and,

o develop as part of the RLF reusable, stand-alone components supporting
integration of knowledge-based techniques into other Ada applications (beyond the
library domain).

The approach taken by Unisys seeks to overcome some of the weaknesses apparent
in other classification-based reuse support systems. One important aspect is the
accesaibility of the classification scheme itself and the relative ease by which the
classification data base can be tailored and extended. Moreover, the RLF provides the
user with guidance on the use of the classification system so that the user is not forced
to become an expert in the classification scheme to use it effectively.

Advantages of Domain-Specificity

A cornerstone to the RLF is its reliance on a domain-epecific point-of-view. In the
context of the RLF, a domein is comprised of a set of existing and anticipated software
applications that provide a common function or similar capability. Domains can be
further sub-divided into horisontal and vertical domains. A horisontal domain is one
(e.g. common data structure definitions and operations) whose contents intersect with
vertical domains oriented around a company’s line-of-business (LOB) or specialized
applications area.

History has shown that many of the past success stories for reuse have come
within certain well-defined domains (e.g. mathematics routines). Unisys believes that
the impact and successful application of a reuse-based approach to software design and

Unisys Paoll Research Center 18 Aprll 1989

189

Position Paper - Reuse In Practice Workshop [

production will be greatest for (vertical) domain-specific libraries. For example,-a
greater proportion of a typical application can be built from parts withdrawn from such
a library. There is also a higher expectation that systems built from such parts will
have a closer functional fit and be more efficient. The capability exists for reusable
sub-systems to be created via part selection and configuration.

There are real costs in establishing such a library and not every domain is mature
and stable enough to support such an intensive reuse-based spprosch. Domain unlym
[Prieto-Dias87b] to support such libraries can be hard, and is certainly expensive and
time-consuming. However, domain analysis is a fundamental prerequisite for a reuse
environment to support the extended life-cycle of an application domain. Such support
is analogous to the way that some software engineering environments support the
traditional waterfall life-cycle. The goal of domain analysis is to provide fundamental
support for the organised growth and development of software applications for the
domain, both from the consuming side and producing side of the software equation.

RLF Overview

Figure 1 illustrates the basic architecture of the RLF at the end of the STARS
Foundations contract phase of the project. The final product of this project was a
prototype librarian application covering the domain of Ada benchmark programs.

All components of this system were developed from an Ada perspective using basic
principles of data abstraction, information hiding and strong typing. Abstract data
types were produced aflter analysing the structure of proven Knowledge Representation
Systems (KRSs), first by focusing on the operations provided by these systems, and only
later considering poesible internal representations of knowledge held within the system.
No attempt was made to naively import festures native to Al programming language
paradigms such as pattern matching or theorem proving.

AdaKNET is a semantic network system useful for capturing static information
describing the basic state of some enterprise or subject area. For example, our two
initial uses of AdaKNET were to capture some basic Ada semantics regarding Ada
compilation unit structure and portions of the Ada type lattice for use by Gadfly, an
Ada unit test plan generator; and, to represent some basic relationships among Ada
benchmark programs for use in an Ada benchmark program library system. An
important part of our work concerns how to combine the representational power of
AdaKNET with other systems, including other KRSe.

AdaTAU is a rule base system that can be used as a stand-alone system or in
conjunction with other knowledge representation systems such as AdaKNET. Rules
collected into rule bases are used to infer new facts from a collection of initial facts.
New knowiedge is added to a system employing the facilities of AdaTAU so that
AdaTAU is acting like an expert system that enhances the capabilities of the original
system. When used together with a system like AdAKNET, AdaTAU becomes part of a
hybrid KRS where the role of AdaTAU is to facilitate the capture and use of dynamic
information that is normally outside the realm of the other cooperating KRS. For
example, the benchmark librarian rules are used to advise librarian patrons of
operational information regarding benchmark components that are not easily
discernible within the benchmark taxonomy provided through AdaKNET.

Unisys Paoll Research Canter 18 Aprll 1989

190

Posltion Paper - Reuse In Practices Workshop 4

RLF

RBDL SNDL

I

AdaTAU | AdaKNET -—-Erowser

Hybrid Knowledge

Representation System
R r 3

[
e 40 - 8

Figure 1. RLF Architecture

A careful separation of the content of knowledge bases from their basic
organisation and available operations is provided through the use of two specification
languages developed explicitly for the RLF [Solderituch89]. RBDL (Rule Base Definition
Language) and SNDL (Semantic Network Definition Language) are used to specify rule
and fact base descriptions for AdaTAU and semantic network descriptions for
AdaKNET respectively. Individual knowledge base definitions are translated
automatically to an Ada compilation unit that, when executed, produces a machine

Unisys Paoll Research Center 18 April 1989

191

Position Paper - Reuse In Practice Workshop 4

readable version of the original specifications. The design and implementation of these
specification languages was accomplished through the use of SSAGS - Syntax and
Semantics Analysis and Generation System [Payton82). SSAGS itself is an Ada-based
tool developed at Unisys that is especially appropriats for the specification of small,
application-specific languages (ASLs) and their translators.

The end user typically works directly with an application built on top of
AdaKNET, AdaTAU or a hybrid of both of them. In addition, an application makes
use of its own data structures. For example, in using the Gadfly application, knowledge
about an Ada unit under test is assembled and stored within a hybrid knowledge base.
From this knowledge gained by examining the Ada unit directly and as a result of a
dialogue conducted with the user, suggested test case plans are generated for the user.
For the librarian user, a repository of Ada modules is available for direct examination.
Alternatively, the user can browse, or be "expertly” guided through, an information web
that captures essential information about the contents of the repository. A library
patron offering a new component for the repository can be guided to the right insertion
point and, using an integrated form of Gadfly, be advised of necessary quality control
measures to be taken before the component can be officially installed.

Knowledge Representation and Librarians

AdaKNET provides the taxonomic structure for a domain. Using the information
web defined via AdaKNET, a user can locate components through multiple access
paths. Information about components and their relationships needs to be stored only
once at the proper level and, through inheritance, that information is available
wherever it is needed. This localisation of information also applies to rule bases that
enable the network to explain itself to the novice or casual user. AdaKNET also is able
to support the representation of meompletely specified components including generics
and the use of part generators.

AdaTAU’s principal role for librarians is to provide navigational advice to the
user. Information that is not readily apparent in the network, or information regarding
components that are distant (in terms of network links, from one another, can be
supplied through attached rule bases. In addition, AdaTAU rules can be provided for
safe component addition tu the library, as well as part qualification.

Figure 2 provides a skeletal view of the Ada benchmark librarian application.
This application assumes an initial browser-style interface so that the user controls how
and where to look for information. In addition, other user modes are provided
(classifier, advisor, adder, etc.) that cause the application to take a more active stance
in support of the user.

Ada Language Issues and Experiences

Many issues relating to Ada and its connection to the design and implementation
of reusable systems were discovered during the course of building the RLF system.
These issues will be explored further during the continuing work on the RLF. The RLF
system itselfl makes heavy use of generics and relies greatly on the use of dynamic
memory to support its storage of network and rule base information. In several cases,

Unlsys Paoll Research Center 18 April 1989

192

Position Paper - Reuse In Practics Workshop [

Browser Editor

L l

| Advisor | Classifier

[Unit Adder

| Reverse Translator|

AdaKNET Model of the Benchmark Domain
with attached AdaTAU Rule Bases

Figure 3. Librarian Architecture

particular compilation systems did not perform adequately in these areas. In other
cases, Ada code could have been made considerably more readable and general if some

Unleys . Paoll Research Cantar 18 April 1989

193

Position Paper - Reuse In Practics Workshop 4

“Ads restrictions were not in place. One particular realisation of this is the lack of a
package type in Ada.

Some of the reuse cupport provided through the RLF could be considerably
enhanced by an integration of RLF knowledge bases with the Ada library structure
managed by the Ada compilation system used in conjunction with the RLF. This kind
of interface is important for tightly integrated reuse-support systems. The RLF system
also exposed some needless portability obstacles in relation to source code loeation
(within host computer file systems) and Ada library-based restrictions.

Future Evolution
The RLF provides basic technology that is pointing in the right direction. Crucial
features of this technology include:

o the ability to support the matching of reuse techniques to domains (particular
techniques include constructive, knowledge-base-assisted and generation);

¢ a separately maintained domain model; and
e support for domain evolution.

An organon (Simoe88| is the culmination of the RLF technology. From the
dictionary, an organon is defined to be “ .. an instrument for acquiring knowledge;
specifically, a body of methodological doctrine comprising principles for scientific and
philosophical procedure and investigation”. RLF f{eatures and capabilities will be
enhanced over time to support library content evolution (e.g., replace family of part
variants with a suitable generator); automatic maintenance of library content and
persistent user models; and, automatic solicitation for new components to cover gaps in
library coverage.

An organon will effectively support wide-spectrum reuse including requirements,
design and test cases. In the end, an organon is a central repository of domain
expertise that effectively combines people, plus emerging and maturing methods, plus
supporting technology.

Unlsys ' Paoll Research Center 18 April 1989

194

Poslition Paper - Reuse In Practics Workshop s

[CAMPSS)|

[Payton82)

References

C. M. Anderson and D. G. MeNicholl, “Common Ada Missile Packages
(CAMP): Preliminary Technical Report, Vol. 1,” STARS Workshop
Proceedings, April 1985. Contract FO 8635-84-C-0280.

T. F. Payton, S. E. Keller, J. A. Perkins, S. Rowan, and S. P. Mardinly,
“SSAGS: A Syntax and Semantics Analysis and Generation System,”
Proceedings of COMPSAC '82, 1982, pp. 424-433.

[Prieto-Dias87a] R. Prieto-Dias and P. Freeman, “Classifying Software for Reusability,”

IEEE Softwere, 4(1) (January 1987), pp. 6-16.

[Prieto-Dias87b] R. Prieto-Diss, “Domain Analysis for Reusability,” Proceedings of

[Simoe88]

[Solderitsch8s)

[Solderitsch89)

[Wallnaus8s]

Unisys

COMPSAC 37, Tokyo, Japan, October 1987.

M. Simos, “The Growing of an Organon: A Hybrid Knowledge-Based
Technology and Methodology for Software Reuse,” Proceedings of 1988
National Institute for Software Quality and Prodsctivity (NISQP)
Conference on Software Reusability, April 1988, pp. E-1 through E-25.

J. Solderitsch, M. Simos, and K. Wallnau, “Reusability Library
Framework (RLF),” Conference Proceedings of TRI-Ada ’88, October
1988, pp. 250-257.

J. Solderitsch, K. Wallnau, and J. Thalhamer, “Constructing Domain-
Specific Ada Reuse Libraries,” Proceedings of Seventh Annsal National
Conference on Ads Technology, March 1989.

K. Wallnau, J. Solderitsch, M. Simos, R. McDowell, K. Cassell, and D.
Campbell, “Construction of Knowledge-Based Components and
Applications in Ada,” Proceedings of AIDA-88, Fourth Annsal
Conference on Artificial Intelligence 8 Ads, November 1988, pp. 3-1
through 3-21.

Paoll Researeh Center 18 Anell 1980

195

DEPARTMENT OF THE ARMY

US ARMY INFORMATION SYSTEMS SOFTWARE DEVELOPMENT CENTER-WASHINGTON
PORT BELVOIR, VIRGINIA 22060-3436

ArivTion oe APR | 2 1989

RAPID Center

James Baldo, Jr.

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311-1772

Dear Mr. Baldo:

Attached is a position paper written to gain the participation of
Terry Vogelsong in the Reuse in Practice Workshop to be hosted jointly by
ACM SIGAda, the Institute for Defense Analyses, and the Software
Engineering Institute from July 11-13, 1989. Mr. Vogelsong is a technical
staff member of the Reusable Ada Packages for Information Systems
Development (RAPID) Center within the U.S. Army Information Systems
Software Development Center - Washington (SDC-W) located in Falls Church,
YA. SDC-W's mission is to develop and maintain management information
systems for the Army.

Mr. Vogelsong, as RAPID's representative, has served in the U.S. Army
Information Systems Software Center since 1985 and has been a part of the
RAPID project since Jan 1989. He has attended several conferences and
reuse workshops and has briefed RAPID to industry and i{nternal
organizations. His knowledge of RAPID and how to support both developers
and users makes him an excellent candidate to attend the Reuse In Practice
Workshop. Mr. Vogelsong can be contacted at (703) 756-5202/5003 or at the
following address:

USAISSDCW
ATTN: ASQBI-WRC STOP H-4 (Terry Vogelsong)
Fort Belvoir, VA 22060-5456

It is critical that RAPID participate in this workshop to learn how
others have resolved reuse issues. As RAPID will be operational on May 1,
1989 and the workshop occurs in July, RAPID may have answers to issues to
be discussed. Having a functioning library system makes RAPID a qualified
candidate for attendance. RAPID looks forward to receiving an invitation
for Terry Vogelsong to participate in the Reuse Workshop to held in

Pittsburgh, PA from July 11-13, 1989. //\izis
S%C H. CHAPPELL, JR.

Colonel, AG
Commanding

196

REUSABLE ADA PACKAGES FOR INFORMATION SYSTEM DEVELOPMENT (RAPID) -
AN OPERATIONAL CENTER OF EXCELLENCE FOR SOFTWARE REUSE

The following position paper describes the Reusable Ada Packages for
Information Systems Development (RAPID) Center located within the U.S.
Army Information Systems Software Development Center - Washington (SDC-W)
located in Falls Church, VA. SDC-W's mission is to develop and maintain
management information systems for the Army. Particular emphasis is
placed on the library system used to catalog, analyze, and retrieve
reusable software components.

Overview

RAPID, initiated in July 1987, was conceived and developed in support
of the Department of Defense Ada initiative. The major role of the RAPID
program is to promote the reuse of Ada software, and further, to reduce
the cost of system development and maintenance. While providing real
services and accomplishing useful tasks during prototype operations, the
RAPID Center is a learning laboratory: evaiuating and refining reuse
methods and techniques; accumulating a store of experience and a cadre of
experienced personnel; and refining RAPID guidelines and procedures.

Phase I of RAPID, completed in January 1989, included developing the
software for the RAPID Center Library system and authoring initial policy
and procedure documents. Phase 2, which begins on May 1, 1989, {s an
18-month Pilot RAPID Center operation. During the first nine months, a
single development effort will be extensively supported to prove
reusability concepts, refine library software, and resolve contractual and
management {ssues. With a limited scale of operation, mistakes and
reusability issues can be detected early and corrected or resolved with
minimal damage. The remaining nine months will test the feasibility of
servicing five Software Development Centers within the U.S. Army
Information Systems Software Center (ISSC). Follow-on phases include
expanding service to all of the U.S. Army Information Systems Engineering
Cc]n]mnd (ISEC), Department of the Army, etc., as needed and as funding
allows.

After the successful pilot operation is completed, the scope of RAPID
will extend to multiple projects, hardware, operating systems, and
organizations. The {nitial domain analysis covered only information
management systems, i{.e., financial, logistical, tactical management
information, cosmunication, personnel/force accounting, and miscellaneous
“other software"” systems. But the policfes, procedures, and guidelines
developed in support of RAPID reuse are generic and evolutionary and
therefore should apply to any domain.

page 1

197

Staffing

RAPID will have a staff tailored to perform and train Ada reuse,
encouraging design methods and architectures that build from reusable
components. Ada Consultants or Engineers from RAPID will provide
consultation on reuse throughout the entire life cycle of project
development and technical assistance on the use of the RAPID Center
1ibrary and its reusable components. RAPID System Analysts or Designers
will attend project reviews to advise on reuse {ssues, stay abreast of
projects, advise project staffs, identify opportunities to reuse existing
components, identify potential reusable components, and provide guidance
and support to programmers 1integrating reusable components and
documentation into applications.

S

Cosmand-wide training by RAPID staff on Ada reuse will include the

following course topics: .

a. How to ifmplement reuse throughout the life-cycle, from
conception through maintenance.

b. How to write reusable, portable, maintainable components.

c. How to use the RAPID Center Library, including how to insert
components into new development efforts.

RAPID Center Library

The heart of RAPID is the RAPID Center Library (RCL). RCL is much
more than a "repository.® RCL fs an operational, {interactive library
system used for the {identification, analysis, and retrieval of Ada
reusable software components. RCL operates on a Digital MicroVAX II
located at SDC-W and consists of 30,000 1ines of Ada code. The system was
designed to be dynamic or modifiable to adjust to the supported domain.
Modification is performed through internal system 1ibrary functions via a
menu or keypad keys. None of the 30,000 lines of Ada code need be changed
to support a modification.

RCL user functions {involve the identification and extraction of a
reusable software component (RSC). The user identifies the uirements
of a component needed through a faceted classification scheme (explained
below). The library takes the description, searches for, and displays a
1ist of “"candidate” RSCs. Internal system tools aid in the selection of
an RSC. The present tools are:

a. Analyzing the candidate 1ist of RSCs.

. Displaying the number of times each RSC is used,
Displaying the number of reported problems,
Displaying a reusability measure, and
Displaying a complexity measure.

oG N -
*

page 2

198

Present RCL tools continued:
b. Browsing through an individual RSC on candidate list.

1. Viewing the RSC abstract,

2. Viewing the RSC description,

3. Viewing a list of documents that support RSC,

4. Viewing 1ist of problem reports and text of each problem
report if necessary, and .

5. Viewing numeric measures of lines of code, number of
uses, outstanding problems, etc.

c. Extracting a selected RSC from candidate 1ist or downloading
s the code and documentation.

d. Maintaining a search session or “"candidate® list of RSCs.
1. Saving the session,
2. Restoring a saved session,

3. Deleting a saved session, or
4, Clearing the session.

Faceted Classification Scheme

RCL uses a faceted classification scheme to store and retrieve RSCs.
The classification scheme is a method by which the universe of knowledge
is built up or "synthesized" from the elemental classes. Synthesis is the
process of assembling elemental classes to express a superimposed,
complex, or compound class. Facets are the arranged groups of elemental
classes that make up the scheme. This scheme is based upon the Ruben
Prieto-Diaz approach of two groups of describers. The first is the
“functionality” group consisting of function, objects, and medium
attributes. The second is the "enviromment” group, consisting of system
type, functional area, and setting types of facets.

Facets -- properties an RSC may have -- represent different ways of
looking at a component. For each facet, specific descriptive terms,
called facet terms, classify an RSC within that facet. Terms with the
same meaning are known as synonyms, and a group of synonyms {s a concept.
One term from such a group is selected as the representative term (the
“name” of the concept) and serves as the facet term used for the actual
classification of RSCs. The remaining synonyms are keyed to the
representative term in a 1ist called a thesaurus. When users enter terms
to describe the desired component, any one of the synonyms is equivalent
to the representative term.

Not every facet need be employed in classifying an RSC. However, the
facet's function, language, and certification level should always be
given. More than one facet term may be given for a single facet.
Component classification can be changed or augmented as required. The
RAPID Library classification scheme {s designed to allow additions and
changes to improve its descriptive power.

page 3

199

The initial set of facets used by RAPID is as follows:

a. Function - the process the component performs, such as SORT,
SIGN, DELETED, etc.

b. Object - the conceptual object the component operates on, such
as STACK, WINDOW, PERSON, etc.

c. Algorithm - any special method name associated with the function,
such as BUBBLE for the function SORT.

d. Data Representation - the data structure for the physical
representation of the object within the component, such as
LINKED LIST, RECORD, POINTER, ARRAY, etc.

e. Unit Type - the program structure of the component, such as
FUNCTION, SUBROUTINE, PACKAGE, TASK, etc.

~f. Hardware - the hardware configuration(s) on which the component

operates, such as VAX, RATIONAL, etc.

g. Operating System - operating system associated with the hardware
configuration such as VMS,» MVS, UNIX, etc.

h. Language - the programming language that the component is written
in, such as ADA, PASCAL, C, etc.

i. Area of Application - the appiication area that the component
applies to, such as PERSONNEL, LOGISTICS, etc.

Jj. Degree of Certification - an indication of the certification
level of the component, such as TESTED or CERTIFIED.

RAPID Library System Features

RCL system logs a variety of information for the purpose of tracking
its performance, evaluating possible changes to enhance the system, and
triggering RAPID Center activities. The logged information includes RSC
use, search failures, suggestion box, and user accounts. Some of the data
is automatically incorporated into the RSC catalog, while other
information is available through reports. These reports and feedback
mechanisms aid the RCL System Administrator in determining if the search
apparatus needs to be modified or other actions need to be taken. The
primary function of the System Administrator is the storage and cataloging
of RSCs. Additional duties include maintaining user accounts, 1logs,
suggestions, and updating RSC analysis and search features.

When a user extracts an RSC from the library, a date must be
specified when he or she expects to be able to provide "feedback" about
successes or problems with the RSCs. These experiences are analyzed and
several actions may be taken, as appropriate: updating the RSC's use
history in the 1library, initiating a problem report, - recommending
enhancements to the RSC, recommending new RSCs, or recommending changes to
the 1ibrary search apparatus. Feedback {is solicited about functional fit,
cost savings, ease of installation, actual versus expected performance,
problems, recosmendations for improvement, and any other user comments.
Another example of a system generated log fs search failure information.
This may result in recommendations for new or enhanced RSCs or in updates
to RCL search mechanisms (i.e., the classification scheme and the
underlying thesaurus), depending on the cause of the search failure.

page 4

200

Reusable Software Components

The RAPID Center Library system {s presently operational and the
RAPID staff is populating the library with RSCs. Sources of RSCs include
reviews of ongoing projects, commercial off the shelf, fielded systems,
-and RAPID developed. ISEC's reusable goals that pertain to the reusable
component are maximum reusability, efficiency, flexibility, ease of use,
and protection against misuse.

A1l RSCs will be evaluated for quality, usefulness, complexity,
portability, and profitability. The checklist below will be used to
determine if an RSC is to be stored in the library: '

» a. Review for portability in accordance with ISEC Portability

Guidelines.
b. Review for reusability in accordance with ISEC Reusability
Guidelines. .

C. Review for reliability.

d. Review for maintainability.

e. Review for proper testing and test data.

f. Review for complete documentation - abstract, reuser's
manual, function, interfaces, etc.

The evaluation of RSCs will be aided by the use of an automated Ada
Measurement and Analysis Tool that measures and evaluates the quality and
software factors of reusability, vrelfability, portability, and
maintainability of the developed software. Exactly which tools will be
used and to what measurement levels the tools will be set will be
determined during pilot operation. The ultimate goal will be to include
components that are of high quality, documented, and tested.

Summary

Establishing and operating the RAPID Center required a commitment of
resources and personnel by SDC-W management. Until software reuse becomes
a "way of 1ife,* the RAPID Center must lead the way. Many issues remain
to be resolved, several of which will be discussed at the Reuse In
Practice Workshop. But with sound policy and attention to the needs and
perceptions of the supported development staffs, the RAPID program will
more than pay for itself. RAPID is truly a center of excellence for
software reuse.

page 5

201

Distribution List for IDA Document D-754

NAME AND ADDRESS

Sponsor

Lt Col James Sweeder
SDIO/ENA

The Pentagon, Room 1E149
Washington, DC 20301-7100

Others

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Mr. Karl H. Shingler
Department of the Air Force
Software Engineering Institute
Joint Program Office (ESD)
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Keith Bromley

Code 7601T

Naval Ocean Systems Center
271 Catalina Blvd.

San Diego, CA 92152-5000

Ms. Christine Braun

Contel Technology Center
15000 Conference Center Drive
P.O. Box 10814

Chantilly, VA 22021-3808

Brian Baker

NAVDAC

8th & M Street, S.E.
Washington, Navy Yard
Washington, DC 20374

Jim Perry .
GTE Govenment Systems
TTA Street

Building 12

Needham, MA 02194

NUMBER OF COPIES

Distribution List-1

NAME AND ADDRESS

Capt. Jack Rothrock
USAISSDCW STOP H-4
Fort Belvoir, VA 22060-5456

CSED Review Panel

Dr. Dan Alpert, Director

Program in Science, Technology & Society
University of Illinois

Room 201

912-1/2 West Illinois Street

Urbana, Illinois 61801

Dr. Ruth Davis

The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, Va 22201

Dr. Thomas C. Brandt
10302 Bluet Terrace
Upper Marlboro, MD 20772

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College

Hanover, NH 03755

Mr. A.J. Jordano

IBM, Federal Systems Division
6600 Rockledge Dr.

Bethesda, MD 20817

Dr. John M. Palms, President
Georgia State University
President’s Office

University Plaza

Atlanta, GA 30303

Dr. Ernest W. Kent

Philips Laboratories

345 Scarborough Road
Briarcliff Manor, NY 10510

NUMBER OF COPIES

1

Distribution List-2

. a

NAME AND ADDRESS NUMBER OF COPIES

Mr. Keith Uncapher, Associate Dean 1
School of Engineering
University of Southern California
Olin Hall :
® 330A University Park
Los Angeles, CA 90089-1454

IDA

General W.Y., Smith, HQ
® Mr. Philip L. Major, HQ
Dr. Robert E. Roberts, HQ
Ms. Ruth L. Greenstein, HQ
Ms. Anne Douville, CSED
Mr. Terry Mayfield, CSED
Dr. Richard Ivanetich, CSED
® Dr. Richard Wexelblat, CSED
Dr. Dennis Fife, CSED
Mr. James Baldo, CSED
Mr. David Wheeler, CSED
Dr. Norman Howes, CSED
Mr. Steve Edwards,CSED
Dr. Craig Will, CSED
Mr. Robert Knapper, CSED
Mr. Michael Bloom, CSED
Ms. Beth Springsteen, CSED
Ms. Sylvia Reynolds,CSED
IDA Control & Distribution Vault

QO DD bbbk Pk et fk ek pemt DD P pemk b emh ek bk ek ek e

Distribution List-3

